
Logic 
 
 
Sentence - statement that can be determined to be either true or false; 3 > 2 
Sentential Function - contains a variable which means it may or may not be true (e.g., x > 2); 

can be transformed into sentence by substituting value for variable 
Quantifiers 

Universal - "for all", ∀ 
Existential - "there exists", ∃ 

Negation - "not", ~ 
Conjunction - "and", Λ, both parts have to be true; e.g., 3 > 2 Λ 3 is an integer is true 
Disjunction, "or", V, one part has to be true; e.g., 3 > 2 V 3 is negative is true 

Inclusive - no restrictions; both parts can be true: (p V q) V (p Λ q) 
Exclusive - if one part is true, both parts can't be true: (p V q) Λ ~(p Λ q) 

Implications - "if... then"... p � q 
Antecedent - p 
Consequent - q 

p q p � q 
T T T 
T F F 
F T T* 
F F T* 

* Can't prove anything if antecedent is false 
Sufficient - if (p � q) is true, we know if p is true, then q is true so p is sufficient for q 
Necessary - if (p � q) is true, if we know q is true, we can't say anything about p; q is 

necessary for p, but not sufficient 
Necessary and Sufficient - p ⇔ q; "if and only if", "iff"; means (p � q) Λ (q � p) 

Truth Table - look at every possible combination 
p q p Λ q p V q p ⇔ q ~p 
T T T T T F 
T F F T F F 
F T F T F T 
F F F F F T 

Laws - sentences that are always true; used to derive theorems 
Identity - ∀p, p � p 
Syllogism - transitivity; (∀ p,q) ((p � q) Λ (q � r)) � (p � r) 
Noncontradiction * - ~(p Λ ~p) 
Excluded Middle * - p V ~p; no such thing as half true or half false 
Tautology - p Λ p � p 
                   p V p � p 
Commutative - p Λ q ⇔ q Λ p 
                        p V q ⇔ q V p 
Associative - p Λ (q Λ r) ⇔ (p Λ q) Λ r; p V (q V r) ⇔ (p V q) V r 
Distributive - [p Λ (q V r)] ⇔ [(p Λ q) V (p Λ r)] 
                     [p V (q Λ r)] ⇔ [(p V q) Λ (p V r)] 
DeMorgan's * - ~(p Λ q) ⇔ (~p V ~q) 
                       ~(p V q) ⇔ (~p Λ ~q) 
* used to do proof by contradiction 

Example: ∀ p,q  p Λ q � p; use truth table to show this statement is a law (always true) 



p q p Λ q p Λ q � p 
T T T T 
T F F T 
F T F T 
F F F T 

p � q 
Converse - q � p 
Inverse - ~p � ~q 
Contrapositive - ~q � ~p 
~(p � q) ⇔ p Λ (p � ~q) 
Double Negation - ~~p � p 
Original statement and contrapositive are equivalent (as are converse and inverse) 

 
Rules of Inference 

Substitution - ∀x, ∃y  x + y = 5; plug in any constant for x and statement is still true 
Detachment - p � q, if you know p is true, then q has to be true 

 
Proof - start with true statement and use various laws to show your desired conclusion is true 

Deductive - look only at logical rules and structure of argument (truth depends on truth of 
initial assumption) 

Contradiction - assume ~p and try to get contradiction which implies assumption is wrong so 
p must be true 

Construction - use rules of inference to get p without making assumptions; also called direct 
proof 

Inductive - look at past and draw conclusions; not used in formal proofs 
 
Assumptions must be: 

Independent - assumptions shouldn't interfere with each other; should be able to prove an 
assumption from subset of assumptions 

Consistent - if assumptions prove p, they shouldn't be able to prove ~p 
Complete - should be able to prove true or false; if you can't, something is missing 
Exists - can prove it's true, but you may need to prove it exists 

 
To prove p � q 

a) Assume p, show q (conditional proof) 
b) Assume ~q, show ~p (contrapositive proof) 

 
To prove p ⇔ q 

a) Show p � q and q � p 
b) Show p � q and ~p � ~q 
c) Show p � a � q � b � p 
d) Show p ⇔ a ⇔ b ⇔ q 

 
To prove ∀x, p 

Pick an arbitrary x and show p 
 
To prove ∃x, p 

a) Proof by contradiction (assume ∀x, ~p and find some x where ~p is false) 
b) Construct p from some x 



 
Proof by Induction - (not accepted by everyone) 

Show ∀n, pn 
Start by showing p1 
Show ∀k (Pk � Pk+1) 

Example: sum of first n odd numbers if n2 
If n = 1, 1 = 12 
Assume 1 + 3 + 5 + ... + (2k-1) = k2 
1 + 3 + 5 + ... + (2k - 1) + 2k + 1 =? (k + 1)2 
k2 + 2k + 1 = (k + 1)2... this is true 

Example: the largest number n* is 1 
Assume n* > 1, then n*2 > n* so n* can not be greater than 1 
Do same thing for n* < 1 
Valid proof, but antecedent assumes largest number exists... with false antecedent, you can 

prove anything 
 



Real Numbers 
 
 
Natural Numbers - all positive whole numbers; 1, 2, 3, ... 
Integers - zero and all positive and negative whole numbers; 0, ±1, ±2, ... 
Rational Numbers - can be written a/b, where a & b are integers 
Irrational Numbers - can't be written as rational numbers (e.g., sqrt(2), π) 
Real Numbers - include both rational and irrational numbers 
 
 
Intervals 
(a,b) - open interval; any number between a and b, excluding a and b (a < x < b) 
[a,b] - closed interval; any number between a and b, including end points (a ≤ x ≤ b) 
(a,b] - half open; any number between a and b, only includes one end point (a < x ≤ b) 
[a,b) - a ≤ x < b 
 
 
Absolute Value 
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Powers 
an = a⋅ a⋅ ...⋅ a (n factors) 
a-n = 1/an 
ar⋅as = ar + s 
(ar)s = ars 

aa =2/1  (valid if a ≥ 0) 

baab =  

b

a

b

a =  

nn aa =/1  
q pqppqqp aaaa === /1/1/ )()(   (p an integer, q a natural number) 

(abc)s = as⋅bs⋅cs 
 
 
Algebra Rules 
a + b = b + a 
(a + b) + c = a + (b + c) 
a + 0 = a 
a + (-a) = 0 
ab = ba 
(ab)c = a(bc) 
1⋅ a = a 
aa-1 = 1 (for a ≠ 0) 

(-a)b = a(-b) = -ab 
(-a)(-b) = ab 
a(b + c) = ab + ac 
(a + b)c = ac + bc 
(a + b)2 = a2 + 2ab + b2 
(a - b)2 = a2 - 2ab + b2 
(a + b)(a - b) = a2 - b2 



 
 
Inequalities 
a > b and b > c � a > c 
a > b and c > 0 � ac > bc 
a > b and c < 0 � ac < bc 
a > b and c > d � a + c > b + d 
a > b � -a < -b  (direction of inequality reversed if both sides multiplied by negative number) 
 
Relations 
Relations (R = "relates to") 

x R y (x is at least as good as y) and y R x (y is at least as good as x) 
Preferences (P = "preferred to") 

x P y means y P x 
{(x,y) : x R y}... order is important; designates preferences 
 



Sets 
 
 
Set - grouping or collection of objects, S = {a, b, c} or S = {typical member : defining properties}, 

e.g., B = {(x,y) : px + qy ≤ m, x ≥ 0, y ≥ 0} 
Element - an object in a set; also called members; x ∈ S 
Subsets - A ⊆ B if every member of A is also a member of B 

Proper Subset - A ⊂ B means A ⊆ B and B ⊄ A) 
Equal Sets - each element of set A is an element of set B and each elopement of B is an 

element of A; i.e., A = B ⇔ A ⊂ B and B ⊂ A 
Null Set (∅) - empty set; set with no elements; ∅ ⊂ of all sets 
Universal set (U) - set that contains everything; can define your own universal set in the context 

of what you're doing (e.g., can only have 0 and 1 in U) 
Complement (SC) - x ∈ SC iff x ∉ S; sometime written as SC

U, complement of set S with respect to 
universal set U 

Union - elements that belong to at least one of the sets A and B; like AND in logic 
A ∪ B = {x : x ∈ A or x ∈ B} 

Intersection - elements that belong to both A and B; like OR in logic 
A ∩ B = {x : x ∈ A and x ∈ B} 
Disjoint Sets - A ∩ B = ∅ 

Minus - elements that belong to A, but not to B 
A \ B = {x : x ∈ A and x ∉ B} = {x: x ∈ (A ∩ BC)} 

 
 
 
 
 
 
 
 
Partition - sets form a partition if they are pairwisely disjoint; the union of the partitions makes up 

the original set and the intersection of any two partitions is ∅; used for probabilities in 
econometrics 

 
 
 
 
 
 
 
Product - gives ordered pairs (x,y) ∈ S x T such that x ∈ S and y ∈ T; e.g., S = {1,2} and T = {3,4}, 

then S x T = {(1,3), (1,4), (2,3), (2,4)} 
 

A A A A 

C 

B B B 

C ⊂ A A ∪ B A ∩ B A \ B 

A 

R 
S 

T 

R, S, T partition A if: 
R ∪ S ∪ T = A 
R ∩ S = R ∩ T = S ∩ T = ∅ 



Rules 
S ∪ S = S 
S ∩ S = S 
S ∪ SC = U 
S ∩ SC = ∅ (law of contradiction) 
(S ∩ T) ∩ Z = S ∩ (T ∩ Z) = (S ∩ Z) ∩ T (commutative law) 
S ∩ (A ∪ B) = (S ∩ A) ∪ (S ∩  B) (distributive law) 
If S ⊂ T and T ⊂ V then S ⊂ V (transitivity) 
 
Any two sets must relate to each other in one and only one of the following ways: 

1) Identical (S = T) 
2) Disjoint (S ∩ T = ∅) 
3) S ⊂ T (proper subset) 
4) T ⊂ S (proper subset) 
5) S ∩ T ≠∅, but S ⊄ T and T ⊄ S (intersect, but neither is a subset of the other) 

 



Functions 
 
 
Function - rules that assigns a unique real number, y, to each number, x 

y = f(x) ("y is a function of x") 
f: x → y ("function f maps x to y") 
x = independent variable, exogenous variable, or argument of the function 
y = dependent variable, endogenous variable 

Domain - all values of x for which the function gives a meaningful value 
Range - the set of values that a function assumes 

y = x2 is a function 
y = sqrt(x4) is not a function 

Graphs - shows all ordered pairs (x,y) that satisfy the function 
 
Implicit Functions - determined by some property 

x2 + y2 = 27 
Explicit Functions - y is explicitly defined as a function of the independent variable 

y = sqrt(27 - x2) 
 
Constant Functions - y doesn't change based on x; horizontal line on a graph 
Linear Functions - y = ax + b 

Slope - a = (y2 - y1)/(x2 - x1) 
y-Intercept - b 

Linear Inequalities - B = {(x,y) : px + qy ≤ m} 
 
Increasing - ∀ x1, x2, x1 > x2 � f(x1) > f(x2) 

Weakly Increasing - use ≥ instead of >; also called non-decreasing 
Decreasing - ∀ x1, x2, x1 < x2 � f(x1) < f(x2) 

Weakly Decreasing - use ≤ instead of <; also called non-increasing 
 
Correspondence - domain points are mapped to a subset of the range 
 
Solving Equations - find all values of the variables for which the equation is satisfied 
Two Techniques - do the following to both sides of the equality 

(a) add (or subtract) the same number 
(b) multiply (or divide) by the same number (≠ 0) 

Parameters - constants 
 
 
Polynomials 

Quadratic Formula - for b2 - 4ac ≥ 0 and a ≠ 0, ax2 + bx + c = 0  ⇔  
a

acbb
x

2

42 −±−=  

nth Order - an
xn + an-1x

n-1 + ... + a1x + a0; can have up to n distinct roots 
 



Summation 
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Useful Formulas 
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(an - bn) = (a - b)(an-1 + an-2b + an-3b2 + ... + bn-1) 
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Limits and Continuity 
 
 
Sequence - function from positive integers to real numbers; e.g., xn = n+1, n = 1, 2, ... 
Limit - sequence has a limit if it  converges to a real number L 

limn→∞ xn = L 
Example - xn = 1/n; limn→∞ xn = 0 

 
 
Rigorous Definition 
f(x) has limit (or tends to) A as x tends to a, and write limx→a f(x) = A, if for each number ε > 0 

there exists a number δ > 0 such that |f(x) - A| < ε for every x with 0 < |x - a| < δ 
In English - limx→a f(x) = A means that we can make f(x) as close to A as we want for all x 

sufficiently close to (but not equal to) a 
Using It - if asked to use the definition to prove a limit exists, you first assume any ε > 0 and 

solve |f(x) - A| < ε for x. Then use 0 < |x - a| < δ to get a value for δ in terms of ε. 

 
 
 
Theorems 
1) If a sequence {xn} is non-decreasing (∀ n xn+1 ≥ xn) and bounded from above (∃ L s.t. L ≥ xn ∀ 

n), then the sequence {xn} must converge 
2) If a sequence {xn} is non-increasing (∀ n xn+1 ≤ xn) and bounded from below (∃ L s.t. L ≤ xn ∀ 

n), then the sequence {xn} must converge 
3) If a sequence is not monotonic, but has bounds, then the sequence may not converge, but it 

has convergent subsequences 
Example: xn = 1 when n is even and -1 when n is odd; can't find a δ to satisfy definition for 

ε < 1, but the subsequences are bounded at 1 and -1 
3a) f all the subsequences have the same limit, then the sequence has a limit 

Example: xn = 1/n when n is even and -1/n when n is odd; converges to 0 
4) If a sequence is not bounded, it will diverge (but can't say a sequence that is bounded 

necessarily converges... see #3) 
 
 



Rules for Limits 
If limx→a f(x) = A and limx→a g(x) = B, then 

a) limx→a A = A 
b) limx→a (f(x) ± g(x)) = A ± B 
c) limx→a (f(x) ⋅ g(x)) = A ⋅ B 
d) limx→a (f(x) / g(x)) = A / B   (if B ≠ 0) 
e) limx→a (f(x))p/q = A p/q   (if A p/q is defined) 
f) If functions f and g are equal for all x close to a (but not necessarily at x = a), then 

limx→a f(x) = limx→a g(x) whenever either limit exists 
 
 
Special Cases 
Don't Exist - vertically asymptotic functions (± ∞) 
One-Sided - value depends on which side you approach the limit from 
Infinite Limits - horizontally asymptotic functions 
 
 
Vector Notation 
x = (x1, x2, ... , xk) 
Sequence of vectors - converge when |L - xn| gets smaller 

Euclidean Distance - d(x,y) = sqrt((x1 - y1)
2 + (x2 - y2)

2 + ...) 
Taxi Distance - d(x,y) = |x1 - y1| + |x2 - y2| + ... 
?? Distance - d(x,y) = max(|x1 - y1|, |x2 - y2|, ...) 

 
 
Neighborhood 
Neighborhood of x is a region around that point with certain distance, ℵ(x,ε) = {y: d(x,y) < ε}... 

i.e., a circle centered on x with radius ε 
Limit Point - number x is a limit point of a set S if every ε neighborhood of x contains a point of S 

other than x 
Finite sets never have limit points 

Interior Point - x is interior to S if ∃ ε > 0, such that if y ∈ ℵ(x,ε) then y ∈ S (i.e., ℵ(x,ε) ⊂ S) 
Every interior point is a limit point, but not the other way around 

Open Set - S is an open set if every element is an interior point 
Closed Set - a set is closed if it contains all of its limit points (points on border are limit points of 

open sets even though the points aren't in the set) 
Special Cases - only two sets can be both open and closed at the same time (∅ and U) 
If S is open, then SC is closed 
 
 
Limits of Functions (using neighborhoods) 
f(x) has limit L at a if for each number ε > 0 there exists a number δ > 0 such that if x ∈ ℵ(a,δ) 

then f(x) ∈ ℵ(L,ε) 
 
 



Continuity 
Continuous - graph of the function has no breaks; formal definition: 

f is continuous at x = a if limx→a f(x) = f(a)  
Conditions: 

1) function f must be defined at x = a 
2) the limit of f(x) as x tends to a must exist 
3) this limit must be exactly equal to f(a) 
If only condition 1 isn't satisfied, it is a "removable" discontinuity 

 
 
Some continuous functions 
f(x) = c (a constant) 
f(x) = x 
Polynomials (they're a sum of continuous functions) 
R(x) = P(x)/Q(x) (where P(x) and Q(x) are polynomials and Q(x) ≠ 0) 
 
Intermediate Value Theorem 
Let f be a continuous function for all x. Let f(xo) = a and f(yo) = b where 

a < b, then for any c between a and b, ∃ x between xo and yo such 
that f(x) = c 
Proof 1 (outline) -  

a) Create two sequences by if f[(xo + yo)/2] < c then 
x1 = (xo + yo)/2, else y1 = ( 

b) Show the sequences converge at c 
Proof 2 (outline) -  

a) Define A = {x: f(x) ≥ c and xo ≤ x ≤ yo} and B = {x: f(x) ≤ c and xo ≤ x ≤ yo} 
b) Show A and B are closed sets 
c) Show A ∩ B ≠ ∅ 
d) ∃ x ∈ A ∩ B... f(x) ≤ c and f(x) ≥ c so f(x) = c 

 
Properties of Continuous Functions 
If f and g are continuous at a, then 

a) f + g and f - g are continuous at a 
b) f ⋅ g and f / g (if g(a) ≠ 0) are continuous at a 
c) [f(x)]p/q is continuous at a if [f(x)]p/q is defined 
d) f(g(x)) is continuous at a if both f(x) and g(x) are continuous at a (composites) 

 
Limits of Continuous Functions 
Just plug in value rather than taking the limit 
 
Continuity and Differentiability 
If f is differentiable at x = a, then f is continuous at x = a 

x yo xo 

a 

c 
b 



Differentiation 
 
 
Derivative - use to describe rate of change (to study of how quickly quantities change over time) 

Slope - f '(a) = slope of the tangent to the curve y = f(x) at the point (a,f(a)) 
Secant - straight line connecting two points on the graph of a function 
Tangent - limiting straight line toward which the secant tends as you hold one point 

constant and move the other one closer; say first point is (a,f(a)) and second point is 
(a + h, f(a + h)); find slope of tangent by taking limit as h → 0 (eqn below) 

   
Derivative only exists at a point if there is a unique tangent (i.e., no kinks) 

 
 
Hard Way (using definition of tangent to compute a derivative) 

1) Add h (h ≠ 0) to a and compute f(a + h) 
2) Compute the corresponding change in the function value: f(a + h) - f(a) 
3) For h ≠ 0, form the Newton quotient (eqn above) 
4) Simplify the fraction as much as possible; should cancel h from the denominator 
5) Take limit of fraction as h → 0 
Example: 

f(x) = x2 
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Notation 
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Increasing & Decreasing (revisited) 
f '(x) ≥ 0 ∀ x ∈ interval I ⇔ f is increasing in I (strictly increasing if > 0) 
f '(x) ≤ 0 ∀ x ∈ interval I ⇔ f is decreasing in I (strictly decreasing if < 0) 
f '(x) = 0 ∀ x ∈ interval I ⇔ f is constant in I 
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Newton (differential) quotient of f 
 
Equation for tangent at (a,f(a)) is 

y - f(a) = f '(a)(x - a) 



Other Interpretations 
Rate of Change - change in y per unit change in x 

Instantaneous rate of change of f at a is f '(a); (e.g., anything labeled "marginal" such as 
"marginal cost") 

Relative (or proportional) rate of change of f at a is f '(a) / f(a); usually quoted as a 
percentage per unit time 

 
 
Continuity 
Continuity is necessary but not sufficient for derivatives to exist 
If a function is differentiable then it is continuous  (diff � continuity, but not continuity � diff) 
 
 
Rules for Differentiation 
f(x) = A (constant)  �  f '(x) = 0 
 
y = A + f(x)  �  y' = f '(x) (additive constants disappear) 
 
y = Af(x)  �  y' = Af '(x) (multiplicative constants are preserved) 
 
f(x) = xa  �  f '(x) = axa-1 (power rule) 
 
F(x) = f(x) ± g(x)  �  F '(x) = f '(x) ± g '(x) 
 
F(x) = f(x) ⋅ g(x)  �  F '(x) = f '(x) ⋅ g(x) + f(x) ⋅ g '(x) 
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du
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dx

dy ⋅=  (chain rule) 

 
y = ua  �  y' = aua-1u' (generalized chain rule) 
 
F(x) = f(g(x))  �  F '(x) = f '(g(x))⋅g'(x) (still the chain rule) 
 

Examples: 
f(x) = (2x + 1)2, let a = 2x + 1 so f(x) = a2 
f '(x) = f '(a2)⋅g'(2x + 1) = 2a⋅(2) = 4a = 4(2x + 1) 
 
z = a(x3 + 2x)3 + 4(x3 + 2x), let y = x3 + 2x so z = ay3 + 4y 
dz/dx = dz/dy⋅dy/dx = (3ay2 + 4)⋅(3x2 + 2) = 3a(x3 + 3x)2 + 4)(3x2 + 2) 
 
f(x) = ((2x + 1)5 + 2(2x + 1)4 + 3)(2x2 + 1), let y = 2x + 1 
f '(x) = [5(2x + 1)4(2) + 8(2x + 1)3(2)](2x2 + 1) + 4x((2x + 1)5 + 2(2x + 1)4 + 3) 

 



Implicit Differentiation 
F(x,y) = c.... implicit function g allows you to write y in terms of x (i.e., y = g(x) so F(x,g(x)) = c) 
If two variables x and y are related by an equation, to find y': 

a) Differentiate each side of the equation with respect to x, considering y as a function of x. 
(Usually, you'll need the chain rule) 

b) Solve the resulting equation for y' 
Example: y3 + 3x2y = 13 

a) 3y2y' + (6xy + 3x2y') = 0 
b) y' = -2xy/(x2 + y2) 

 

Example: 2),( == yxyxm  

Let f(x) = y 

2)())(,( == xfxxfxm  
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Example:  x2 - 12x + y2 + 14y + 85 = 0 

diff both sides:  2x - 12 + 2y⋅(dy/dx) + 14⋅(dy/dx) = 0 
(2y + 14)(dy/dx) = 12 - 2x 
dy/dx = (6 - x)/(y + 7) 

 
Check for validity: 
Rewrite it as x2 - 12 + 36 + y2 + 14y + 49 = 0 = (x - 6)2 + (y + 7)2 = 0 
Only solution is x = 6 and y = -7 
Substitute that solution into dy/dx = (6 - 6)/(-7 + 7) = 0/0... so dy/dx is not valid 
(If there is only one point that is a solution, you have an infinite number of tangents so there 

isn't a valid derivative.) 
 
If it was x2 - 12x + y2 + 14y + 84 = 0, you can get (x - 6)2 + (y + 7)2 = 1,  a circle with center (6,-7) 

and radius 1. You can differentiate that so now dy/dx = (6 - x)/(y + 7) is valid 
 
if it was x2 - 12x + y2 + 14y +86 = 0, you get (x - 6)2 + (y + 7)2 = -1... a function with no solution 

so dy/dx again is meaningless. 



Inverse Functions 
y = f(x), maps x to y 
Inverse function f -1(y) = x, maps y to x, but only exists if f(x) is one-to one 
 

 
 

NOTE:
)(

1
)(1

xf
xf ≠− , write that as ( ) 1)( −xf  

Finding inverse - swap variables in function (i.e., use y for x and x for y) and solve for x 
 
Theorem: If f is continuous and strictly increasing (or strictly decreasing) in an interval I, then f 

has an inverse function g, which is continuous and strictly increasing (strictly decreasing) in 
the interval f(I).  If x0 is an interior point of I and f '(x0) ≠ 0, then g is differentiable at y0 = f(x0) 
and g'(y0) = 1/f '(x0) 
Given y = f(x) and f -1(y) = x, we have identities y ≡ f(f -1(y)) and x ≡ f -1(f(x)) so you can take a 

derivative and solve for derivative of f -1 
x ≡ f -1(f(x)) 
Differentiate both sides:  1 = (f -1)'(f '(x) 
Solve for (f -1)':  (f -1)' = 1/f '(x) 

 
Example 
f(x) = 2x + 5... f '(x) = 2 so (f-1)' = 1/2 
Check it: f -1(x) = (x - 5)/2... (f -1)' = 1/2  

 
 
Approximations (when x is close to a) 
f(x) ≈ f(a) + f '(a)⋅(x - a) (Linear) 
 
f(x) ≈ f(a) + f '(a)⋅(x - a) + 1/2 f ''(a)⋅(x - a)2 (Quadratic) 
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2 −++−+−+≈ �  (Polynomial or Taylor) 

 
 
 
 

1-to-1 

x y 

Not 1-to-1 

x y 



Exponents and Logarithms 
 
 
Exponential Functions 
Quantity that increases (or decreases) by a fixed factor per unit of time is said to increase (or 

decrease) exponentially; if fixed factor is a, then 

x = Aat 

Variable (factor or base) is a 
Power is t 
Cases of a: 

a = 1 means x is constant 
a > 1, x is increasing 
a < 1, x is decreasing 

 

   
 
 
Logarithms 
Logarithms is inverse of exponential function 

y = log b x   (x> 0) 

If you leave out the b, assumption is log 10 
 
 
Rules 

bxby = b(x+y) log b xy = log b x + log b y 

bx/by = bx-y log b x/y = log b x - log b y 

(bx)y = bxy log b x
k = k⋅log b x 

  log b b
x = x 

log b x = 
b

x

c

c

log

log
 = 

c

x

b

c

ln

ln

ln

ln ⋅  = 
b

x

ln

ln
 

log b c = 1/log c b 
 
****  NOTE:  log b (x + y) ≠ log b x + log b y  **** 
 



Why use it: 
Questions of form ax = b (e.g., "at present rate of inflation, how long will it take the price level to 

triple", growth, compound interest) 
Solving by = ax 

Take log of both sides:  log b b
y = log b a

x  �  y = xlog b a 
Cobb-Douglas functions: y = xa⋅ zb 

Take log of both sides:  ln y = ln (x
a⋅ zb) = a⋅ln x + b⋅ln z  (easier to work with) 

Elasticities - if y = f(x), εy,x: elasticity of y with repect to x 

)('
)(, xf

xf

x

dx

dy

y

x
xy ⋅=⋅=ε  

in x change %

in  change %

/

/ y

xdx

ydy =  

dx

dy

y

x

xd

dx

dx

dy

dy

yd

xd

yd ⋅=⋅⋅=
ln

ln

ln

ln
 

 
 
Natural Logarithm 

e = limn→∞(1 + 1/n)n = �
∞

=0 !

1

j j
≈ 2.7182818... (irrational number) 

ln = log e 
Special Cases 

ln 1 = 0 
ln e = 1 
eln x = x    (x > 0) 
ln e

x = x 

b

x
xb ln

ln
log =  

 
 
Derivatives 

( )
x

x
dx

d 1
ln =  ( )

)(

)('
)(ln

xf

xf
xf

dx

d =  

 

( ) xx ee
dx

d =  ( ) )(')()( xfee
dx

d xfxf ⋅=  

 
 
Logarithmic Differentiation 
Sometimes easier to use ln or e to take derivatives 
Examples: 

y = log b x...  use conversion 
b

x
xb ln

ln
log =  

xbdx

xd

bdx

b

x
d

dx

dy 1

ln

1)(ln

ln

1ln

ln

⋅=⋅=
�
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�
�
�

�
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y = bx.... take ln of both sides: ln y = xln b 

b
dy

dx

dy

yd
ln

)(ln ⋅= =
y

1
 

Use inverse function rule 

bbby
dx

dy x lnln =⋅=  

 
Examples using the chain rule: 

xeey =  
Let u = ex 

( )xexu x

eee
dx

du

du

dy

dx

dy +=⋅=⋅=  

 
y = ln(ln(ln x))) 

Let z = ln x, w = ln z, y = ln w 

xxxxxzxzwdx

dz

dz

dw

dw

dy

dx

dy 1

ln

1

)ln(ln

11

ln

1

ln

1111 ⋅⋅=⋅⋅=⋅⋅=⋅⋅=  

 
( ) ( )xxebxaxy x 3ln 52 +⋅⋅+=  

Take ln of both sides because ln(ABC) = ln A + ln B + ln C (must have a, b, x > 0) 
( ) ( )[ ]xxexbxaxyz 3lnlnlnlnln 52 ++++==  

( )xx
xx
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Proofs 

Prove: ( )
x

x
dx

d 1
ln =  

h

xh

h

x

hx

h

xhx

dx

xd

hhh

)/1ln(
lim

ln
lim

ln)ln(
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)(ln

000
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Multiply by 1 = x/x 

�
�

�
�
�

� +⋅
→ hxh

x

xh /
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0

 

Now substitute m = x/h; note limit h → 0 is equivalent to m → ∞ 
(Could use L'Hopital's Rule instead) 

m

m
m mxm

m
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Because ln is a continuous function, rewrite as 
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Prove: ( )
)(

)('
)(ln

xf

xf
xf

dx

d =  

Use chain rule (same as proof for ef(x)) 
 

Prove: ( ) xx ee
dx

d =  

( ) ( )
h

ee

h

ee

dx

ed hx

h

xhx

h

x 1
limlim 00

−=−= →

+

→  

Use the inverse function rule: y = ex, take ln of both sides: ln y = ln e
x = xln e = x 

Take derivative of both sides with respect to y 

dy

dx

dy

yd =ln
 

Use derivative of ln 

dy

dx

y
=1

 

Use inverse function rule: 

( ) xe
dx

y
dx

dy ==
xed

   so    

 

Prove: ( ) )(')()( xfee
dx

d xfxf ⋅=  

)(xfey =  
Version 1: 

Take ln of both sides: ln y = f(x) 
Take derivative of both sides: d(ln y) = d(f(x)) 

)(')(')('
1 )( xfexfy

dx

dy
dxxfdy

y
xf ⋅=⋅=�⋅=  

Version 2: (chain rule) 
Let u = f(x), so y = eu 

)(')(' )( xfexfe
dx

du

du

dy

dx

dy xfu ⋅=⋅=⋅=  

 



L'Hopital's Rule (and EVT & MVT) 
 
 
Extreme Value Theorem 
Aim is to find points in domain at which function reaches its max and min values 

Max - c ∈ D (domain) is a max iff f(x) ≤ f(x) ∀ x ∈ D 
EVT - if f is a continuous function in a closed and bounded interval [a,b], then f attains a 

maximum and a minimum value on [a,b]... proof is really hard 
 
 
 
 
 
 
 
 
 
 
 
 
Theorem 7.4 (Necessary First-Order Condition) 
Let f be defined in an interval I and let x0 be an interior point of I. If x0 is a max or min point and 

f '(x0) exists, then f '(x0) = 0 
Proof: 

Assume x0 is a max point interior to I and f '(x0) exists. 
If absolute value of h is sufficiently small, (x0 + h) ∈ I because x0 is an interior point 
Since x0 is a max, f(x0 + h) ≤ f(x0) ∀ h 

h

xfhxf
xf h

)()(
lim)(' 00

00

−+
= → ≤ 0, ∀ h > 0 

h

xfhxf
xf h

)()(
lim)(' 00

00

−+
= → ≥ 0, ∀ h < 0 

Therefore f '(x0) = 0 
Proof for min is similar 

 
 
Rolle's Theorem 
Let f(x) be continuous on the interval [a,b] and f(a) = f(b) = 0. If f is differentiable on (a,b), then 

∃ c ∈ (a,b) such that f '(c) = 0 
Proof: 

Case 1: f(x) = 0 ∀ x ∈ [a,b]. f is constant so f '(x) = 0 
Case 2: ∃ x0 ∈ (a,b) such that f(x0) > 0 and f '(x0) ≠ 0 (can't assume "then" portion of 

theorem) 
From EVT, f should take a maximum value x* ∈ [a,b] 
f(x*) ≥ f(x0), and x* ≠ a and x* ≠ b (i.e., x*  not on the boundary) 
Since x*  is an interior point and is a max, then f '(x*) = 0 (Thm 7.4) 

Case 3: ∃ x0 ∈ (a,b) such that f(x0) < 0 and f '(x0) ≠ 0 (similar to case 2) 
 

a b 

Not continuous (EVT 
doesn't apply); can find 
min, but no max 

a b 

max is f(c) 
min is f(d) 

c d 



Mean Value Theorem 
Let f be a continuous function on [a,b] and have a finite 

derivative at every x ∈ (a,b) (i.e., function is differentiable), 
then ∃ c ∈ (a,b) such that 

ab

afbf
cf

−
−= )()(

)('  

(i.e., f '(c) = slope of line connecting a and b) 
Proof: consider the function 

)(
)()(

)()()( ax
ab

afbf
afxfxg −

−
−−−=  

Observe g(a) = g(b) = 0 
g is differentiable and continuous because it is a function of f (which is differentiable and 

continuous) 
∃ c ∈ (a,b) such that g'(c) = 0 (by Rolle's Theorem) 
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Therefore at c 
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)('0)(' , so 
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−
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L'Hopital's Rule 
Application of MVT used to examine limit when both numerator and denominator tend to zero 
If (1) f(x) and g(x) are continuously differentiable (derivatives are also continuous); 

(2) f(x0) = g(x0) = 0  *** also works for f(x0) = g(x0) = ∞ or combinations thereof *** 
(3) g'(x) ≠ 0 in some neighborhood of x0 

(4) 
)('

)('
lim

0 xg

xf
xx→  exists 

Then 
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)('
lim

)(

)(
lim

00 xg

xf

xg

xf
xxxx →→ =  

Proof: 
Let y = g(x) and z = f(x); these functions define a curve z = h(y) 
z = f(x) = h(g(x)) ∀ x 
Take derivative of both sides and use chain rule on right side 
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xf

dg

dh

dx

dg

dg

dh

dx

df =�⋅=  

Consider any xn near x0 so h(yn) = zn (i.e., point on the curve) 
By MVT ∃ p ∈ (0,yn) such that h(yn) = h(0) + h'(p)(yn - 0) (i.e., slope from 0 to yn equals y'(p)) 
Therefore, h'(p) = h(yn)/yn = f(xn)/g(xn) since yn = g(xn) and h(yn) = zn = f(xn) 
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ph ==  (right side from line above; middle when xn close to x0) 

Note as xn → x0 then x(p) → x0 since x(p) ∈ (xn,x0) 
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Using L'Hopital's Rule 
Usually need it when you're taking the limit of something to a power 
 

( ) ?)(1lim =+∞→
m

m mf  where 0)(lim =∞→ mfm  

Trick used in these types of problems is: 

( ) [ ] [ ]mm
m mfmf

m
m

m eemf )(1lnlim)(1lnlim)(1lim ++
∞→∞→

∞→==+  

Look at the exponent first: 

[ ]( ) [ ]
m

mf
mfm mm /1

)(1ln
lim)(1lnlim

+=+⋅ ∞→∞→  (little trick to get L'Hopital's Rule to work) 

Use L'Hopital's Rule, first check assumptions: 
1) f & g continuously differentiable... in this case f = ln[1 + f(m)], g = 1/m 
2) f(x0) = g(x0) = 0  (where x0 is the limit; ∞ in this case) 

Since 0)(lim =∞→ mfm (given), then f(x0 = ∞) = ln(1 + 0) = ln(1) = 0 

g(x0 = ∞) = 0 
3) g'(x) ≠ 0... need to check after applying rule 

4) 
)('

)('
lim

0 xg

xf
xx→  exists... need to check after applying rule 

So now 
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)(1ln
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+
∞→ = limit of ratio of derivatives (L'Hopital's Rule) 
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Solve this limit and plug the exponent back into eqn to get answer 
 
 

Example using mmf /1)( =  

Note 2/3

2
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so now ∞=∞e  
 
 
Example using mmf /1)( =  
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Look at exponent 
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Use L'Hopital's Rule 
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Check validity of assumptions 3 & 4 (good) 
So now  e1 = e 
 
 
Example using 2/1)( mmf =  
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Look at exponent: 
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Use L'Hopital's Rule 
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Plug exponent back in 
10 =e  

 
 
Example using Constant Elasticity of Substitution (CES) 

Q = [ ] ρρρ αα /1
)1(

−−− −+ LK  

Find Q0lim →ρ  

=→
Qe ln

0lim ρ
[ ] ρρρ αα

ρ

/1
)1(ln
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−−− −+

→
LKe = 

[ ] ρρρ
ρ αα

/1
0 )1(lnlim
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Look at exponent 
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Use L'Hopital's Rule 
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Plug exponent back in 
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all = 1 



=−+ LKe ln)1(ln αα =
−+ αα 1lnln LKe αααα −=

− 1ln 1

LKe LK  
 
NOTE: if ρ−= Ky  

Use Ky lnln ρ−=  
Differentiate both sides 
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Example 

0
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=
+→ x

x
x  (Don't need to use L'Hopital's rule) 

 
 
Example 
Consider xay =  1>a  

  txz =  0>t  
 
Both y and z go to ∞ as x → ∞, but which one is faster? 
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Look at exponent 
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Solve limit 
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x
x , using L'Hopital's Rule... makes sense from graph: 
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x
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Plug exponent back in 
=−∞e 0 so xa is faster 

 
 

ln x 
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Trick: 

=−→ )()(lim
0

xgxfxx )(lim)(lim
00

xgxf xxxx →→ ⋅  (if f(x) is continuous) 

 
 
Undefined terms: 

∞⋅0, ∞⋅∞ 
∞/∞, 0/∞, ∞/0, 0/0 
∞ ± ∞ 

 
 
Aside: 
x2 = x⋅x = (x + x + ... + x)... there are x number of x's 
Take derivatives 
2x = (1 + 1 + ... + 1)... there are x number of 1's so 
2x = x 
2 = 1 
Now can show all positive integers are = 1 
3 = 2 + 1 = 1 + 1 = 2 = 1 
Can show 0 = 1 
1 = 2 - 1 = 2 - 2 = 0 
Can show fractions = 1 
1/n = 1/1 = 1 
Problem was derivative of product is not equal to derivative of sum... that's why we have the 

multiplication rule for taking derivatives 
 
a = b 
ab = b2 
ab - a2 = b2 - a2 
a(b - a) = (b + a)(b - a) 
a = b + a 
a = 2a 
1 = 2 
Problem... divided by (b - a), but can't do that because a = b so (b - a) = 0 (division by zero) 
 



Higher Order Derivatives 
 
First derivative is slope of function  

Second derivative is slope of first derivative 
h

xfhxf
xf h
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n-th derivative is slope of (n-1)th derivative 
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3)3(20)('' −−= xxf  
 
 
Graphing 

y' ≥ 0 � y is increasing 
y'' ≥ 0 � y is convex               (think of the "v" in convex) 
y'' ≤ 0 � y is concave             (think of a cave) 

 
Inflection Point 
y'' = 0 and y'' changes sign; changes from convex to concave or vice versa 
 
Example 

3xy =  
23' xy =  > 0 ∀ x; y' = 0 ⇔ x = 0 

xy 6'' =  > 0 for x > 0; y'' < 0 for x < 0; y'' = 0 ⇔ x = 0 

6''' =y  (constant) 
 
Example 
 

 
 
 
 
 
 
 
 
 
 
Min and Max 
If y' = 0 we have a local min if y'' > 0 (i.e., convex) 
If y' = 0 we have a local max if y'' < 0 (i.e., concave) 
 

concave convex 

x1 x2 x3 

x1 x2 x3 x1 x2 x3 

f f ' f '' 



Taylor Series Approximations 
 
 

)(zfy =  and )(xgz =  
 
Use chain rule 
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Use multiplication rule 
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Taylor Series 
Approximation of functions (used in maximization or minimization) 
If f(x) is infinitely differentiable for any x. Take a point a 
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will be exact (=) is you add " ),( axR n+ " 

where ),( axR n is the remainder and 0),(lim =∞→ axR n
n  

 
 
Lagrange Form of Remainders 

∃ p ∈ (x,a) such that 
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Proof (by induction) 

n = 0, need to show
1
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Mean Value Theorem says ∃ p ∈ (x,a) such that 
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rewritten as ))((')()( axpfafxf −+=  
(This is Taylor series with n = 0 and the R0 we wanted to show) 
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))((')()( axxsaxafafxf −+−+= , need to show )('')( pfxs =  

Keep x fixed and define a function g for t ∈ (a,x) by 
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1
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� −+−+−= xfxfaxxsaxafafxfag  



By Rolle's Theorem, ∃ p ∈ (a,x) such that 0)(' =pg  so take derivative of g with respect to t, 
then plug in p and set it equal to 0 

[ ])1)()(()1)(('))(('')('0)(' −−+−+−+−= txxstftxtftftg )))(()(''( txxstf −−−=  

0)))(()(''()(' =−−−= pxxspfpg  

Can't have x = p (since p ∈ (x,a)) so that means )()('' xspf =  
 
 
Taylor series is just a polynomial n

n xxaxxaxxaaxp )()()()( 0
2

02010 −++−+−+= �  

1) )()( 00 xfxp =  i.e., )( 00 xfa =  

2) 1
1

00200 )()(21)(')(' axxnaxxaaxfxp n
n =−++−+== −

�  i.e., )(' 01 xfa =  

3) 2
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003200 2)()1()(62)('')('' axxannxxaaxfxp n
n =−−++−+== −

�  i.e., 

2/)('' 02 xfa =  
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0
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Example 

x
xf

−
=

1

1
)(  

00 =x  

Find Taylor approximation for best polynomial 
1)0()( 0 == fxf  

1)1()1()1()(' 22
0 =−=−−−= xxxf  
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So use Taylor series: 
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Plug in values for derivatives: 
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NOTE: this is definition of a geometric expansion: 
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Example 

xexf =)(  

00 =x  

Find Taylor approximation for best polynomial 
1)0()( 0 == fxf  



1)0(')(' 0 =�= fexf x  

etc... (all derivatives = 1) 

Using Taylor series: 
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NOTE: this is definition of ex: x
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Unconstrained Optimization 
 
 
Min/Max 
Let f(x) have domain D. 

Then c ∈ D is a maximum point for f in D ⇔ f(x) ≤ f(c) ∀ x ∈ D 
Then d ∈ D is a minimum point for f in D ⇔ f(x) ≥ f(d) ∀ x ∈ D 
For strict max/min, use < or >. 

 
 
Stationary Point 
x0 is a stationary point for f(x) if f '(x0) = 0 
Example 
  f(x) = x2 f(x) = -x2 f(x) = x3 
 
 
 
 
 
  f '(x) = 2x = 0 � x0 = 0 x0 = 0 f '(x) = 3x2 = 0 � x0 = 0 
  x0 is min x0 is min x0 is min 
 
 
First derivative test for max/min 
If f '(x) ≥ 0 for x ≤ c and f '(x) ≤ 0 for x ≥ c � x = c is a max. 
"     "   ≤              "                 ≥          "                 "        min. 

Proof: 
Take a Taylor series around x0 

=)(xf )( 0xf )()(' 00 xxxf −⋅+ +
−

++
!
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n

xxxf nn

� )(1 xRn+  

)(1 xRn+ )!1(

))(( 1
0

)1(

+
−

=
++

n

xxxf nn

 for ),( 0 xxx ∈  or ),( 0xxx ∈  

For n = 0, ))((')()( 00 xxxfxfxf −+= = )( 0xf )(1 xR+  

Case 1: 0xx <  � ),( 0xxx ∈  

Now if 0)(' ≥yf  ),( 0xxy ∈∀  � 0)(' ≥xf  

))((')()( 00 xxxfxfxf −+= , and 0)( 0 <− xx  so )()( 0xfxf ≤  0xx ≤∀  

Case 2: 0xx >  � ),( 0 xxx ∈  

Now if 0)(' ≤yf  ),( 0 xxy ∈∀  � 0)(' ≤xf  

))((')()( 00 xxxfxfxf −+= , and 0)( 0 >− xx  so )()( 0xfxf ≤  0xx ≥∀  

Therefore )( 0xf  is max point 

Proof for min is similar 
 
 



Extreme Values 
If f '(x) exists for every point in I 

1) Find all the stationary points: f ' = 0 interior to I 
2) Evaluate the function f at the boundary and stationary points. 
3) Identify the largest and smallest values of f 
NOTE: If f '(x) does not exist for some point(s), then we have to evaluate the function at 

these points also 
 
Example 
  y = x2, I = [-1,2] 
 
 
 

Stationary points... f ' = 0 @ x = 0 
Evaluate f(-1) = 1, f(2) = 4, f(0) = 0 
Largest value @ x = 2 
Smallest value @ x = 0 

 
 
Second Order Conditions 
If x0 is an interior point and f '(x0) = 0, then f ''(x0) > 0 (i.e., convex) � f '(x0 + h) > 0 and f '(x0 - h) < 0 

(i.e., x0 is min point) 
"                                              "                     f ''(x0) < 0 (i.e., concave) 
Example 

f(x) = x4 
f '(x) = 4x3 

4x3 = 0 � x = 0 
f '(x) < 0 if x < 0 
f '(x) > 0 if x > 0... therefore, by first derivative test, this is a min point 

f ''(x) = 12x2 
f ''(0) ≥ 0 ∀ x (and only = 0 at x = 0)... by second order conditions, this is a min point 

 
Exception - if f ''(x0) = 0 when f '(x0) = 0, we have to find the first positive derivative. If it is an odd 

number derivative, then x0 is an inflection point 
Example 

y = x3 
y' = 3x2 

3x2 = 0 � x = 0 
y'' = 6x 

6x = 0 � x = 0 
y''' = 6 > 0... 3rd derivative is odd number so 0 is an inflection point 

 
Inflection Point 
c is an inflection point for a twice differentiable function f if there exists an interval (a,b) such that 

either 
a: f ''(x) ≥ 0   a < x < c b: f ''(x) ≤ 0   a < x < c 
 f ''(x) ≤ 0   c < x < b  f ''(x) ≥ 0   c < x < b 

(i.e., if f '' changes sign at c, then c is an inflection point); at inflection point, function changes 
from concave to convex (or vice versa) 

 



 
Convexity & Concavity 
Def 1:   Assume f is continuous on interval I and twice differentiable on I0 interior of I, 

f is concave in I ⇔ f ''(x) ≤ 0 ∀ x ∈ I0 
f is convex on I ⇔ f ''(x) ≥ 0 ∀ x ∈ I0 

 
Def 2:   f is concave (convex) if any line segment joining any 2 points is never above (below) the 

graph of the function 
  Concave Convex 
 
 

Let x ∈ (a,b) � x = (1 - λ)a + λb for λ ∈ (0,1) � 
ab

ax

ab

ax

 to  from distance
 to  form distance=

−
−=λ  (defining a line 

segment between a and b) 
Equation for line passing through (a,f(a)) and (b,f(b)) is 

)(
)()(

)( ax
ab

afbf
afy −

−
−=−  

For point (x,s) on the line,  

)(
)()(

)( ax
ab

afbf
afs −

−
−=−  

))1((
)()(

)( aba
ab

afbf
afs −+−

−
−=− λλ  

=−
−
−=− )(

)()(
)( ab

ab

afbf
afs λ [ ])()( afbf −λ  

)()()1( bfafs λλ +−=  this is the point on the line connecting (a,f(a)) and (b,f(b)) at x 

))1(()( bafxf λλ +−= this is the point on the original function at x 
 
Def 3:   f(x) is convex if ∀ a,b ∈ I, ∀ λ ∈ (0,1) [ ]( ) )()()1(1 bfafbaf λλλλ +−≤+−  

                "     concave                                              "             ≥               " 
(strictly convex (concave) if < (>) rather than ≤ or ≥) 
 
Remark... f is concave if -f is convex 

Proof 
Since -f is convex ))(())()(1())1(( bfafbaf −+−−≤+−− λλλλ  
Multiply both sides by -1 (changes direction of inequality) 

)()()1())1(( bfafbaf λλλλ +−≥+−  which is definition of f is concave 
 
Prove test of concavity: f ''(x) < 0 ∀ x ∈ (a,b) � f is strictly concave by using Taylor series 

WLOG (without loss of generality) assume that b > a � (a,b) 
WLOG let f ''(x) < 0 ∀ x ∈ (a,b) 

2))((''
2

1
))((')()( abpfabafafbf −+−+=  for ),( bap ∈  

 
 
By assumption (2nd line) 0)('' <pf  

term) (negative +−+= ))((')()( abafafbf  

a b x 
f(a) 

f(b) 
s 

f(x) 

- 

- 

+ 



term) (negative +=
−
−

)('
)()(

af
ab

afbf
 

So 
ab

afbf
af

−
−> )()(

)(' , which means slope at point a is greater than slope of line 

connecting a and b so f is concave based on Def 2 
 
 
Jensen's Inequality 

f is concave on I ⇔ ∀ x1, x2, ..., xn ∈ I and ∀ λ1, λ2, ... λn ≥ 0 with 1
1

=�
=

n

i
iλ , and 

)( 2211 nn xxxf λλλ +++ �  ≥ )()()( 2211 nn xfxfxf λλλ +++ �  

(concave if ≤) 
 
Example 

Let λi = probability that x = xi for I = 1, 2, ..., n 

�
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=+++=
n

i
iinn xxxxxE

1
2211)( λλλλ �  

�
=

=+++=
n

i
iinn xfxfxfxfxfE

1
2211 )()()()())(( λλλλ �  

If f is concave � ))(())(( xfExEf ≥  

If f is convex � ))(())(( xfExEf ≤  
 
Example 

Show that f(x) = |x| is convex in (-∞,∞) 
Let a,b ∈ (-∞,∞) and for λ ∈ (0,1) � babaf λλλλ +−=+− )1())1((  

Use triangular inequality: baba +≤+ :  ba λλ +− )1(  ≤ ba λλ +− )1(  

Since (1 - λ) and λ are positive, we can say: 
ba λλ +− )1(  = ba λλ +− )1(  = )()()1( bfaf λλ +− , so f is convex 

 



Probability 
 
 
Definitions 
Outcomes - mutually exclusive results of a random process 

Example: heads or tails (can't have both) 
Example: your computer might never crash, it might crash once, twice, etc. Only one of 

these outcomes will occur; i.e., the outcomes are mutually exclusive 
Probability - of an outcome is the proportion of the time that outcome occurs in the long run 

Example: if the probability of your computer not crashing while you are writing a paper is 
80%, then over the course of writing "many" papers, you will complete 80% of the time 
without a crash 

Sample Space - set of all possible outcomes 
Event - subset of the sample space 
Random Variable (r.v.) - numerical summary of a random outcome 

Example: the number of crashes while writing a paper is numerical and random, so it is a 
random variable 

Probability Distribution - of a discrete r.v. is the list of all possible values of the variable and the 
probability that each value will occur.  The probabilities sum up to 1. 
Example: Let M be the number of times your computer crashes while you are writing a 

paper. The probability distribution is: 
M 0 1 2 3 4 

Prob Dist 0.80 0.10 0.06 0.03 0.01 

Cum Dist 0.80 0.90 0.96 0.99 1.00 
Example: P(1 or 2 crashes) = P(M = 1 or M = 2) = P(M = 1) + P(M = 2) = 0.06 + 0.10 = 0.16 

Cumulative Distribution - probability that the r.v. is less than or equal to a particular value 
Example: P(M ≤ 1) = 0.90 

Bernoulli r.v. - a binary r.v.; can only take on one of two values 
Example: Let r.v. G = 1  if it is going to rain 
  0  if it isn't 

The outcomes of G and their probabilities are G =  1 with probability p 
  0 with probability 1 - p 

Probability Distribution - of a continuous r.v. takes on a continuum of possible values and the 
probability distribution is summarized by a pdf (probability density function) 
Example: Let the driving time to school be a r.v. D and let its pdf be given by: 
P(D ≤ 15) = red area 
P(D ≤ 20) = green area 
P(15 ≤ D ≤ 20) = P(D ≤ 20) - P(D ≤ 15) 
 

Expected Value (mean) - of r.v. y is denoted by E(y); long run average value of the r.v. over 
many repeated trials or occurrences 

If y takes on k possible values y1, ..., yk � �
=

=
k

i
ii ypyE

1

)(  

Example: using data for M, E(M) = 0.80(0) + (0.10)(1) + 0.06(2) + 0.03(3) + 0.01(4) = 0.35 
Example: Bernoulli r.v. E(G) = 1p + 0(1 - p) = p 

Variance - of r.v. y is denoted by Var(y) 

( )[ ]2)(yEyE −  = ( )�
=

−
k

i
iii yEyp

1

2)(  (rhs if y is discrete) 

15 20 25 30 35 



Example: using data for M,  
Var(M) = 0.80(0-0.35)2 + 0.10(1-0.35)2 + 0.06(2-0.35)2 + 0.03(3-0.35)2 + 0.01(4-0.35)2 = 0.6475 

Example: Var of Bernoulli = (1 - p)(0 - p)2 + p(1 - p)2 = p(1 - p) 

Standard Deviation - denoted by sy or σy = )(yVar  

Example: using data for M, sy = sqrt(0.6475) = 0.8 
Moments - expected values of various powers of a function 

First Moment - E(Y) 
Nth Moment - E(Yn) 

Covariance - measure of the extent to which two r.v.'s move together 

[ ]))((),( , yxyx yxEyxCov µµσ −−==  = ��
= =

==−−
k

ii

l

j
ijyixj yyxxPyx

1

)&())(( µµ  

Joint probability distribution - combines probabilities for two events that occur at same time 
Example: 

 x=0 (rain) x=1 (no rain) Total 

y=0 (long drive) 0.15 0.07 0.22 
y=1 (short drive) 0.15 0.63 0.78 

Total 0.30 0.70 1.00 
Correlation Coefficient -  

yx

xy

yVarxVar

yxCov
yxCorr

σσ
σ

ρ ===
)()(

),(
),(  

 
 
Properties of Expected Value 
If b is a constant, bbE =)(  

If a, b are constants, bxaEbaxE +=+ )()(   

If x & y are independent r.v.s, )()()( yExExyE =   
 
Mean & variance of a linear function of a r.v.  

Let x & y be two revs that are related by bxay += , then 

=+= )()( bxaEyE )(xbEa +  
2))(()( yEyEyVar −= [ ]2))(()( xbEabxaE +−+= [ ]2)(xbEbxE −=  =  

1 way: [ ]2222 ))(()(2 xEbxbxExbE +−  =  

2nd way: [ ] [ ]222 ))(())(( xExbExExbE −=−  (can now use rules above 

)())(( 222 xVarbxExEb =−  
 
Marginal Probability Density Function - original distributions of r.v.s in joint distribution function 

),( yxf  

�=
y

yxfxf ),()(  and �=
x

yxfyf ),()( ... seen in total column and row in table above 

 



Conditional Probability 
Probability that x takes a specific value given that y has a specific value, )|( 00 yyxxP ==  

)(

),(
)|(

yf

yxf
yxf =  

Example: 

53.0
51.0

27.0

)3(

)3,2(
)3|2( ==

=
=−===−=

yf

yxf
yxf  

Note, 27.0)2( =−=xf  
 
 
Independence 
x & y are statistically independent if )()(),( yfxfyxf =  

Example: )51.0(27.0)3()2(27.0)3,2( ==−=≠==−= yfxfyxf  so x & y are not ind 
Example: a bag contains 3 balls numbered 1, 2, 3. Two balls are drawn at random with 

replacement. Let x denote the # of the first ball and y denote the # of the 2nd ball. 
)()(9/1),( 0000 yyfxxfyyxxf ======  so x & y are independent 

 
 
Normal Distribution 
With mean µ and variance σ2; denoted by N(µ,σ2) 

f(x) =
1

2

1

2

2

πσ

µ
σe

x
−

−�
�
�

�
�
�

 

Properties 
1) Symmetric around the mean 
2) Approx 95% of area under the curve lies between µ ± 2σ 
3) ),(~ 2

111 σµNx and ),(~ 2
222 σµNx , then 21 bxaxy += ),(~ 2

2
22

1
2

21 σσµµ babaN ++  

4) Standard normal dist (z) has µ = 0 and σ2 = 1; used to calculate the are under the curve 
by converting regular normal distribution to std norm by: 

σ
µ−= y

z  

Example: y ~ N(1,4), P(y ≤ 2) = ?, convert to standard normal 

�
�

�
�
�

� −≤−
2

12

2

1y
P =≤= )2/1(zP 0.69 

Example: => )12.1(zP 0.5 - 0.3686 = 0.1314 
Rules using z 

1) )(1)(1)( cczPczP Φ−=<−=≥   ( )(cΦ is the cumulative density function) 

2) )()()( czPdzPdzcP ≤−≤=≤≤  
 
 
Chi-Squared Distribution 
Sum of k squared independent standard normal r.v.s 

2

1

2 ~ k

k

i
iz κ�

=

 (k = degrees of freedom, df) k=10 
k=5 
k=2 



Properties 
1) Skewed to the right (not symmetric); degree of skewness depends on k; large k 

approaches normal distribution 
2) mean is k, variance is 2k 
3) 2

1 1
~ kz κ  and 2

2 2
~ kz κ  then 2

21 21
~ kkzz ++ κ  

Example 
005.0)40( 2

20 ≈>κP  (using table) 

01.099.01)76.8(1)26.8( 2
20

2
20 =−≈>−=< κκ PP  

 
 
F Distribution 
If 1z  and 2z  are independently distributed 2κ  r.v.s with 1k  and 2k df then 

21 ,
22

11 ~
/

/
kkF

kz

kz
 

 
Properties 

1) Skewed right; approaches normal as ∞→21 , kk  

2) 
22

2

−
=

k

kµ  )2( 2 >k ,  
)4)(2(

)2(2

221

21
2
2

−−
−+

=
kkk

kkkσ  )4( 2 >k  

3) If 2k  is fairly large then 2
1 1kFk κ=  

Example 
05.0)4.3( 8,10 ≈>FP  (using table) 

 
 
Student's t Distribution 
If )1,0(~1 Nz  and 2

2 ~ kz κ  are independent, then 

kt
kz

z
~

/2

1  

 
Properties 

1) Symmetric like normal, but flatter (thicker tails) 

2) 0=µ ,  
2−

=
k

kσ  

Example 
005.0)3( ≈>tP  

01.0)3(2)3|(| ≈>=> tPtP  (because it's symmetric) 
 
 
Central Limit Theorem 
Let y1, y2, ..., yn be iid (independently and identically distributed) with ∞<= yiyE µ)(  and 

∞<= 2)( yiyVar σ , then
y

yy

σ
µ−

 → ∞→n
)1,0(N  

F50,50 
F10,2 
F2,2 



Systems of Linear Equations and Matrices 
 
 
Linear Algebra 
Study of systems of linear equations 

Note: x1x2 = 5 is not a linear equation, but you can make it linear by taking ln of both sides: 
ln x1 + ln x2 = ln 5 (which is linear) 

System - m independent equations; n variables 
a11x1 + a12x2 + ... + a1nxn = b1 
a21x1 + a22x2 + ... + a2nxn = b2 

�  
am1x1 + am2x2 + ... + amnxn = bm 

Coefficients - aij 
Right-hand Sides - bj 
Solution - ordered set or list of numbers (s1, s2, ..., sn) that satisfies all the equations 

simultaneously 
Consistent - a linear system that has at least one solution 

m < n - many solutions 
m = n - at most 1 solution 
m > n - no solution 

Inconsistent - linear system with no solution 
 
 
Matrix 
Rectangular array of numbers considered as an entity; m rows & n columns; denoted by bold 

capital letters 
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aaa

aaa

aaa

�

���

�

�

21

22221

11211

A  

Order - dimensions of a matrix: m x n 
Elements - entries; each aij 
Row Vector - matrix with only one row 
Column Vector - matrix with only one column 
Square Matrix of order n - matrix where m = n 

Main Diagonal - elements a11, a22, ..., ann 
 
 
Vector Operations 
Vectors typically denoted by lower case bold letters 
Components - coordinates; elements of a vector 
Equal - all corresponding components of each vector are equal 

a = b ⇔ ai = bi ∀ i = 1, 2,..., n 

Sum - add corresponding components of 1 x n or n x 1 vectors 

a + b = (a1, a2,..., an) + (b1, b2,..., bn) = (a1 + b1, a2 + b2,..., an + bn) 



Scalar Multiplication - multiply each component by t  

ta = t(a1, a2,..., an) = (ta1, ta2,..., tan) 

Difference - a - b = a + (-b) 
Linear Combination - ra + sb 
Dot Product - also called inner product or scalar product; adds the product of corresponding 

components of two vectors: 

a⋅b = a1b1 + a2b2 + ... + anbn = �
=

n

i
iiba

1

 

θcosbaba ⋅=⋅  (see orthagonality in next section) 

Rules for Dot Product 
a⋅b = b⋅a 
a⋅(b + c) = a⋅b + a⋅c 
(αa)⋅b = α(a⋅b) = a⋅(αb) 

a⋅a = �
=

n

i
ia

1

2 ≥ 0  

 
 
Geometry of Vectors 
Vector a describes the movement from point P = (p1, p2) to Q = (q1, q2) 

 
Sum a + b is the diagonal in the parallelogram determined by the two sides a and b 

 



Difference a - b is the diagonal in the parallelogram determined by the two sides a and -b 

 
Length - also called norm 

22
2

2
1 naaa +++= �a aa ⋅=  

Euclidean Distance 
22

22
2

11 )()()(|||| nn babababa −++−+−=− �  

 
Cauchy-Schwarz Inequality 

baba ⋅≤⋅   

Proof: 

|babab|a nn+++=⋅ �2211ba  ≤ (?) 22
2

2
1 naaa +++ � ⋅ 22

2
2
1 nbbb +++ �  

Square both sides: 
2

2211 )( nnbababa +++ �  ≤ (?) )( 22
2

2
1 naaa +++ � )( 22

2
2
1 nbbb +++ �  

Define 2
11 )()( bxaxg += 2

22 )( bxa ++ ++� 2)( nn bxa + 0≥  

Expand: )2()( 2
111

22
1 bxbaxaxg ++= ++� )2( 22 bxbaxa nnn ++  0≥  

Combine terms: 222
2

2
1 )( xaaa n+++ � xbababa nn )222( 2211 ++++ � )( 22

2
2
1 nbbb �+++  

Rewrite as CBxAx2 ++  
Take derivatives to check convexity 

BAx += 2)(' xg  

0A ≥= 2)('' xg  since it's a sum of squares, ∴ g is convex 

Also, since 0)( ≥xg  it cannot cross the x-axis so there are no real roots or the only root 
is x = 0, therefore B2 - 4AC ≤ 0 (quadratic formula) 

Rewrite as B2 ≤ 4AC 
Substitute values: 2

11 )22( nnbaba ++�  ≤  4 )( 22
2

2
1 naaa +++ � )( 22

2
2
1 nbbb �++  

Factor out 2 in left hand side: [ ]2
11 )(2 nnbaba ++�  

Take it out of the square:  2
11 )(4 nnbaba ++�  

Cancel the 4 and apply def of dot product and length:  
2)( ba ⋅  ≤ )( 22

2
2
1 naaa +++ � )( 22

2
2
1 nbbb �++  // 

 



Orthogonality - a ⊥ b ⇔ a⋅b = 0 

ba
ba

⋅
⋅=θcos , if θ = 90o, cosθ  = 0 so a⋅b = 0 

 
Right angle means: 
||a - b||2 = ||a||2 + ||b||2 (Pythagorean Theorem) 
(a - b)⋅(a - b) = a⋅a + b⋅b 
a⋅a - a⋅b - b⋅a + b⋅b = a⋅a + b⋅b 
-2(a⋅b) = 0 
a⋅b = 0 

 
Two vectors determine a line:  bax λλ +−= )1(  

In 2 dimensions: ��
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Hyperplanes - a plane is a linear combination of 3 points; vector p is orthogonal to a plane if it is 

orthogonal to all lines on the plane; if a and x define points on the plane, then 

p⋅(x - a) = p1(x1 - a1) + p2(x1 - a2) + ... + pn(xn - an) = 0 
 
 
Matrix Operations 
Equal - A = B ⇔ A and B are m x n matrices with aij = bij ∀ i = 1, 2,..., m; j = 1, 2,..., n  
Sum - A + B = (aij)m x n + (bij)m x n = (aij + bij)m x n (add corresponding elements of m x n matrices) 

Rules for Matrix Addition 
(A + B) + C = A + (B + C) (associative) 
A + B = B + A (cumulative) 
A + 0 = A (identity) 
A + (-A) = 0 
(α + β)A = αA + βA (distributive over scalar addition) 
α(A + B) = αA + αB (distributive over scalar multiplication) 

Scalar Multiplication - αA = (αaij)m x n (multiply each element of A by α) 



Product - A = (aij)m x n and B = (bij)n x p, C = AB is m x p matrix C = (cij)m x p, with  

njinjiji

n

r
rjirij babababac +++==�

=

�2211
1

 

Basically taking dot product of each row of A with corresponding column in B: 
Example: 
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c21 = 2⋅3 + 3⋅1 + 1⋅(-1) = 6 + 3 - 1 = 8 
Rules for Matrix Multiplication 
(AB)C = A(BC) (associative) 
A(B + C) = AB + AC (left distributive) 
(A + B)C = AC + BC (right distributive) 
Cautions 
AB ≠ BA  (not commutative; BA may not even exist) 
A(B + C) ≠ (B + C)A (not commutative) 
AB = 0 � A = 0 or B = 0 
AB = AC and A ≠ 0 � B = C 

Identity Matrix - of order n is n x n matrix having ones along the main diagonal and zeros 
elsewhere 
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AIn = ImA = A 
 
Transpose - If A is m x n matrix, transpose of A is defined as n x m matrix whose first column is 

the first row of A, whose second column is the second row of A, etc: 
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Rules for Transposition 
(A')' = A 
(A + B)' = A' + B' 
(αA)' = αA' 
(AB)' = B'A' 

Symmetric Matrix = A = A' 
Orthogonal Matrix = A'A = In 
 
Determinants - denoted by det(A) or |A|; has to be square matrix 

2nd Order 

12212211
2221

1211 aaaa
aa

aa
−==A  



3rd Order ("easy" formula; doesn’t work for larger matrices) 

==

3231

2221

1211

333231

232221

131211

aa

aa

aa

aaa

aaa

aaa

A  

122133112332132231322113312312332211 aaaaaaaaaaaaaaaaaa −−−++  

Cofactors 
1) Pick a column or row (which has most number of zeros)... e.g., row 1 
2) For each element, take determinant of matrix made by deleting the corresponding row 

and column (Mij) 
3) Multiply the determinant by -1 to the i + j power and by the corresponding element aij 

ijij
ji aM+− )1(        { ij

ji M+− )1(  is the cofactor } 

Example using row 1 
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21 [ ] 0)0(1)0(21 =−−=  

Rules for Determinants 
If all elements in a row (or column) of A are 0, then |A| = 0 
If all elements in a row (or column) are multiplied by α, determinant is multiplied by α 
Value of determinant is unchanged if a multiple of one row (or column) is added to a 

different row (or column) 
If two rows (or two columns) are interchanged, determinant changes sign, but absolute 

value is unchanged 
If two rows (or columns) are proportional, then |A| = 0 
|A'| = |A| 
|AB| = |A|⋅|B| 
|αA| = αn|A|  (A is n x n matrix) 
Cautions 
|A + B| ≠ |A| + |B| 

 
Cramer's Rule - solving a system of equations 
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To find x1, replace A's first column with b; take determinant and divide by |A| 
To find x2, replace A's second column with b; take determinant and divide by |A| 
Example: 

2x1 + 4x2 = 7 



2x1 - 2x2 = -2 
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Inverse - denoted by A-1; has to be square matrix 

AX = XA = In 
Singular - matrix with no inverse 
Nonsingular - matrix has an inverse ⇔ |A| ≠ 0 
Rules for Inverses 
(A-1)-1 = A 
(AB)-1 = B-1A-1 
(A')-1 = (A-1)' 
(αA)-1 = α-1A-1 
Example: 
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dzcxdycw

bzaxbyaw1AA ... four equations with four unknowns 

Use Cramer's rule: 
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Adj )(A  

Adjoint - Adj(A); transpose of the matrix made up of all the cofactors 
"Easy" Way - make a new matrix with the original next to an identity matrix; use the following 

operations to get an identity matrix on the left; the result on the right is the inverse: 
Types of Operations 
1) switch rows 
2) multiply row by scalar 



3) add multiples of a row to other rows 
Example 
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Multiply first row by 1/2: 
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Add -4 times first row to second row: 
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Add -3 times first row to third row: 
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Multiply second row by -5: 
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Add -3/2 times second row to first row: 
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Add 7/2 times second row to first row: 
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Multiply third row by 10/23: 
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Add -13/10 times third row to first row: 
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Add -4/5 times third row to the second row: 
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Systems of Equations 
Coefficient Matrix - m x n matrix of all the coefficients of a linear system of m equations with n 

unknowns; from page 1, A is the coefficient matrix to the linear system above 
RHS Vector - b is a column vector containing the bjs on the right hand side of a linear system 
Can rewrite system of linear equations from page 1 as Ax = b 
Solve with inverse: A-1Ax = x = A-1b 
 
 
Linearly Independent 

nxxx ,,, 21 �  (all 1×k  vectors) are 

linearly dependent if ∃ )0,,0,0(,,, 21 �� ≠nλλλ  such that 12211 ×=+++ knn 0xxx λλλ �  

linearly independent if ∃ )0,,0,0(,,, 21 �� ≠nλλλ  such that 12211 ×=+++ knn 0xxx λλλ �  

How to check, arrange each vector as a column (or row) in a matrix, X, if |X| = 0, they're linearly 
dependent 

 



Partial Derivatives 
 
 
Function of Several Variables 
Function - rule that assigns a specified number f(x) to each n vector x = (x1, x2, ..., xn) in the 

domain D 
Example: f(x,y) = x2 + y2 

3d plot: 

 
2d elevation plot - plots all combinations of x and y that give a constant value for f(x,y) 

Example: Budget Constraint, Coke & Pizza 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Pizza 

C
ok

e 

MC of x (Pizza) in 
terms of y (Coke) 

I 
PPizza 

I 
PCoke 

-PPizza 
PCoke 



Partial Derivatives 
One variable: 

h

xfhxf
xf h

)()(
lim)(' 0

−+= →  

Two variables: 

h

yxfyhxf

x

yxf
h

),(),(
lim

),(
0

−+=
∂

∂
→  (partial of f with respect to x; hold y constant) 

Interpretation - partial derivative is slope of tangent to function in plane where you're taking 
the partial (e.g., if you're in 3 dimensions, partial wrt x gives you tangent to curve in plane 
where y is held constant; this plane with be parallel to the xz plane); all partials determine 
a plane that is tangent to the function 

Example - Cobb-Douglass production function of capital, K, and labor, L 
ba LKALKf ⋅=),(   ( 0,0 >> LK ) 

ba LaKA
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LKf 1),( −⋅=
∂
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Example: 
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x
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y
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Higher-Order Partial Derivatives 
z = f(x,y) 

First order: 
x
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∂
∂ ),(

 

Second order: 
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Note: Usually fxy = fxy, but not always 
Example: 234 2),,( xzyxzyxfw ++==  

234 zx
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Young's Theorem - function that has nth order continuous derivatives, if any two derivatives 
involve differentiating with respect to each of the variables the same number of times, then 
the derivatives are necessarily equal (i.e., the order of the differentiation doesn't matter) 
Example where Young's doesn't work:  
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If you hold x = 0, f(x,y) = 0 (regardless of what happens to y); also f(x,y) = 0 when y = 0 
(regardless of x) 
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Why are these different? Look at second order partial where y = x 
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But we just showed that the partial at (0,0) is 1; that means the function is not 
continuous at (0,0) 



 
 
Gradient - vector of all first order partial derivatives of a function evaluated as some point 

��
�

�
��
�

�

∂
∂

∂
∂

∂
∂

nx

f

x

f

x

f
,,,

21

�  evaluated at ),,,( 21 nxxxx �=  

Hessian Matrix - all combinations of second order partial derivatives 
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Young's Theorem says this is usually a symmetric matrix 
Example: Cobb-Douglas function: ba LAKLKf =),(  
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Aside: for Cobb-Douglas production function: 
a + b = 1 constant returns to scale 
a + b > 1 increasing returns to scale 
a + b < 1 decreasing returns to scale 

 
 
Quadratic Forms 
Functions with variables to the second power 

Example: 22 2),( cybxyaxyxf ++=  

In matrix notation: ( ) ��
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General Case: 
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Positive Definite - f(x,y) > 0 ∀ (x,y) ≠ (0,0) 
Positive Semidefinite - f(x,y) ≥ 0 ∀ (x,y) ≠ (0,0) 
Negative Definite - f(x,y) < 0 ∀ (x,y) ≠ (0,0) 
Negative Semidefinite - f(x,y) ≤ 0 ∀ (x,y) ≠ (0,0) 
 
f(x,y) is positive definite iff a > 0, c > 0, and ac - b2 = |A| > 0 

Proof: 
Let 1=x  and 0=y  

0),( >= ayxf  

Let 0=x  and 1=y  

0),( >= cyxf  

0)1(12)1,/(
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c
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b
aabf  and since a > 0 then 02 >− bac  

That proves positive definite leads to a > 0, c > 0, and ac - b2 = |A| > 0 
Now suppose a > 0, c > 0, and ac - b2 = |A| > 0 
Factor out a and add/subtract b/ay: 
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f(x,y) is positive semidefinite iff a ≥ 0, c ≥ 0, and ac - b2 = |A| ≥ 0 
f(x,y) is negative definite iff a < 0, c < 0, and ac - b2 = |A| > 0 
f(x,y) is negative semidefinite iff a ≤ 0, c ≤ 0, and ac - b2 = |A| ≥ 0 
 
Example: 22),( yxyxf += ... positive definite 

Example: 2)(),( yxyxf −= ... positive semidefinite 

Example: 2)(),( yxyxf −−= ... negative semidefinite 

Example: 22),( yxyxf −= ... indefinite 
 
 



Chain Rule 
If )(tgx = and )(thy = so ))(),((),( thtgfyxf =  

Total Derivative of f wrt t: 
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General Case: ),,,( 21 nxxxf � , ),,,( 21 mii ttthx �=  

j

i
n

i ij t

x
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f

t

f
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∂

∂
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∂
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�
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Example: ),( 00 tkythxf ++  

ktkythxfhtkythxf
t

f
yx ),(),( 0000 +++++=

∂
∂

 

 



Total Differentials & Taylor Approximations 
 
 

NOTE:  
xy

yxF
yxF

∂∂
∂= ),(

),(
2

12  

 
Implicit Functions 
Given cyxF =),(  (level curve), what happens to y as we change x... if y = f(x), we look at new 

function cxfxFxg == ))(,()(  

Take derivative of both sides: 0
)(

))(,())(,( 21 =
∂

∂⋅+
x

xf
xfxFxfxF  

Solve for 
),(

),(

))(,(

))(,()(

2

1

2

1

yxF

yxF

xfxF

xfxF

x

xf

x

y −
=

−
=

∂
∂=

∂
∂

 

Example: IyPxP yx =+   �  
y

x

P

xPI
y

−
=  

Py

P

x

y x−
=

∂
∂

 

Example:  0102),( 223 =−−+= yyyxxyxF  

x

y

∂
∂

 at )1,2(),( =yx  

xyxyxF 23),( 2
1 +=   �  16)1)(2(2)2(3)1,2( 2

1 =+=F  

104),( 2
2 −−= yxyxF   �  1010)1(42)1,2( 2

2 −=−−=F  

5

8

10

16
)1,2( =

−
−=

∂
∂
x

y
 

Example:  02 =+ xyex  
Can compute the implicit derivative, but it won't matter 
Problem... there's no ),( yx  that solves the equation 

Other cases that doesn't work: 0),(2 =yxF  (i.e., vertical lines) 
 
 
Directional Derivative 
From h to k: khD ,  where hxx += 0  and kyy += 0  

Approximates change in function as function of t, as ),()( 00 tkythxftg ++=  

 
 
Gradient Vector 

��
�

�
��
�

�

∂
∂

∂
∂=∇

y

F

x

F
F  

Two properties: 
Perpendicular to tangent 
Parallel to direction of maximum increase in function 



Now, 0)()( 0201 =−+−= yyFxxFD  can be rewritten as 0
0

0 =��
�

�
��
�

�

−
−

∇
yy

xx
F  or  

( )00 yyxxF −−⋅∇  

You can use θcosbaba =⋅  with F∇=a  and =b any vector; a special case has  

z⋅∇= FD , where z is a vector pointing to the maximum increase in the function (i.e., 

parallel to the gradient so 10cos 0 = , NOTE: 10cos 0 =  is the maximum value for cos so this 
is the maximum increase in the function). 

 
 
Second Derivative 
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),(

),(

),(
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yxG

yxF
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2113
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FFFFFFF

F
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22212

12111

21

3
2

0
1

FFF

FFF

FF

F
  ("bordered" Hessian) 

 
 
Linear Approximation 
Approximation:  )()(),(),( 0000 yyfxxfyxfyxf yx −+−+≈  

Plane through a point ),,( 000 zyx : )()( 000 yyBxxAzz −+−=−  

If ),( yxfz = , plane tangent to ),( yxf at ),,( 000 zyx :  )()( 000 yyzxxzzz yx −+−=−  

x

z
z x ∂

∂=  and 
y

z
z y ∂

∂=  

In 2d say dxxx += 0 x or dyyy += 0 ; now say dzzz += 0  so 0zzdz −= = dyzdxz yx + , 

similar to saying dyfdxfyxdf yx +=),(  

Rules: 
dgbdfabgafd ⋅+⋅=+ )(  (a & b scalars & f  & g functions) 



dgfdfgfgd ⋅+⋅=)(  

2g

dgfdfg

g

f
d

⋅−⋅=��
�

�
��
�

�
 

())( fgz = � dfgdz '=  
Proof of second rule: 

[ ] [ ]dyfggfdxyxgyxfyxgyxfyxgyxfd yyx +++= ),('),(),(),()),(),((  

[ ] [ ] dgfdfgdygdxgfdyfdxfg yxyx ⋅+⋅=+++  

Doesn't matter if x and y are functions of other variables: 
),( yxFz =  where ),( stfx =  and ),( stgy =  

)),(),,(( stgstfFz =  

dszdtzdz st +⋅= ,  tytxt yFxFz ⋅+⋅=  and sysxs yFxFz ⋅+⋅=  

( ) ( )dsyFxFdtyFxFdz sysxtysx ⋅+⋅+⋅+⋅=  

( ) ( ) dyFdxFdsydtyFdsxdtxFdz yxstystx +=+++=  

General case: ),,,( 21 nxxxF � ;  �
=

⋅
∂
∂=

n

i
i

i

dx
x

F
dF

1

where 0
iii xxdx −=  (old - new) 

Example: 32 xxyz +=  

( ) dyxydxxydyzdxzdz yx ⋅++=+= 23 22  

If x changes from 3 to 5 and y changes from 2 to 7 (really too big for this technique) 
dx = 2; dy = 5 

( ) )5)(2)(3(2)2()3(32 22 ++≈dz  
 
 
Taylor Series with Several Variables 
Move from ),( 0

2
0
1 xxf  to ),( 21 xxf ; know value of 1x  and 2x , but not ),( 21 xxf  

Can approximate it. 
Can rewrite 1

0
11 thxx +=  and 2

0
22 thxx +=  so now ),()(),( 2

0
21

0
111 thxthxftyyxf ++==  which 

is a function of 1 variable (t) and can use Taylor Series 

n
n

t
n

y
t

y
tyyty

!

)0(

2

)0('
)0(')0()(

)(
2 ++++≈ �  or 

n
n

t
n

ty
t

y
tyyty

!

*)(

2

)0('
)0(')0()(

)(
2 ++++= � , where 0 ≤ t* ≤ t 

How do you get y' wrt t?  22
0
21

0
1212

0
21

0
11 ),(),()(' hthxthxfhthxthxfty xx ⋅+++⋅++=  

so 2
0
2

0
121

0
2

0
11 ),(),()0(' hxxfhxxfy xx ⋅+⋅=  

Next is y'': ��
= =

=
2

1

2

1

0
2

0
1 ),()0(''

i j
jiij hhxxfy  

Can write second order Taylor Series using matrix notation with the Hessian matrix: 
Hhhhx0 '2)(')()( 00 +⋅+=+ fxfhxf  

 
Example: 10653),( 22 +++= yxyxyxf  

dx 

dy 

dy = fx⋅dx 

fx 



Evaluate Talor series approximation for )1,1(),( 00 =yx  

+−⋅+−⋅+−⋅+−⋅+≈ )()1,1()()1,1()()1,1()()1,1()1,1()2,2( 0222
1

0112
1

0201 yyfxxfyyfxxfff

))(()1,1( 0012 yyxxf −−⋅  (higher order derivatives are all zero so this is exact) 

yxf 561 +=  611 =f  512 =f  

yxf 1252 +=  1222 =f  

665)1(12)1(6)1(17)1(1124)2,2( 2
1

2
1 =+++++≈f  

Check approximation: 6610)2(6)2)(2(5)2(3 22 =+++  
 
 
Taylor Series with 2 variables and n = 3 

+−+−+= ))(,())(,(),(),( 00000000 yyyxfxxyxfyxfyxf yx  

[ ]+−−+−+− ))()(,(2))(,())(,(
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0000

2
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000 yyxxyxfyyyxfxxyxf xyyyxx  

[ +−−+−+− )())(,(3))(,())(,(
!3

1
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2
000

3
000

3
000 yyxxyxfyyyxfxxyxf xxyyyyxxx  

]3
000

2
0000 ))(,())()(,(3 yyyxfyyxxyxf yyyxyy −+−−  

 
 



Optimization with Several Variables 
 
 
Extreme Value Theorem (Existence Theorem) 
Any continuous function attains a maximum and a minimum in a compact set (i.e., closed and 

bounded set), there exists a maximum c and a minimum d; sufficient, but not necessary 
condition 
Maximum: )()( cx ff ≤ ; Minimum: )()( dx ff ≥   (Extreme Points) 

 
 
First-Order Conditions 
For interior point ),,,( 21 nccc �=c to be a max or min of )(cf , necessary conditoin is: 

0
)( =

∂
∂

ic

f c
 ∀ ni ,,2,1 �=    (Stationary Points) 

Condition is also necessary for local max or min 

Aside: Will also have directional derivative 0)()(
1

=⋅=�
=

n

i
ihk hcffD c  

 
 
Theorem 
f defined over S ∈ Rn 
F(x) defined in range of f 
g(x) defined on S (domain of f) 
g(x) = F(f(x)) 
a) if F is increasing and c maximizes (minimizes) f over S, then c also maximizes (minimizes) g 

over S 
b) if F is strictly increasing then c maximizes (minimizes) f over S  iff c maximizes (minimizes) g 

over S 
Example: ba LAKLKf =),(   )0,0( >> LK  

Let uuF ln)( =   (strictly increasing) 

LbKaALKg lnlnln),( ++=  
Find K & L to max g, and they'll also max f 

Proof of a: 
Assume c miximizes f 

)()( xc ff ≥  ∀ S∈x  

))(())(( xc fFfF ≥ ∀ S∈x  because F is increasing 
Proof of b: 

Assume c maximizes g 
))(())(( xc fFfF >  ∀ S∈x  

)()( xc ff ≥  ∀ S∈x  
 
 
Finding Max or Min 
of a differentiable function f defined on a compact set 

1) Find all stationary points 
2) Find largest & smallest values of function on the boundary 

Global max 

Local max 



Example: if domain is x ∈ [0,3] and y ∈ [0,3], need to look all around square determined 
by x & y at their limits 

3) Compute values of function for all points in steps 1 & 2 
4) Compare values of the function 
5) Largest value is the max; smallest is the min 

 
 
Using First Derivative for Max/Min 
With single variable, looked at stationary point c, if 0)(' >xf  for cx <  and 0)(' <xf  for cx > , 

then c is a max 
Doesn't work with several variables: 

22 2),( ybxyxyxf ++=  
Stationary points: 

022 =+= byxf x  

022 =+= ybxf y  

(0,0) is a stationary point 
Is is a min? 

Fix 0=y  and look at 2)0,()( xxfxg == ... has min as 0=x  

Same for 0=x  

But if 2/3−=b , 22 3),( yxyxyxf +−=  so 0),( 2 <−= xxxf   (when 0≠x ) 
 
 
Second Order Conditions 
Let ),( yxf  be continuous function with continuous first and second order derivatives in a 

doman S, and ),( 00 yx  be an interior stationary point 

),( 0011 yxfA =  (i.e., second derivative wrt x evaluated at ),( 00 yx ) 

),(),( 00210012 yxfyxfB ==   (because f is continuous) 

),( 0022 yxfC =  

1) 0<A  and 02 >− BAC , then ),( 00 yx  is local max 

2) 0>A  and 02 >− BAC , then ),( 00 yx  is local min 

3) 02 <− BAC , then ),( 00 yx  is a saddle point 

4) 02 =− BAC , then ),( 00 yx  is a min, max, or saddle point 

 

NOTE: 
CB

BA
BAC =− 2  (the Hessian) 

 
Example: xyxyxyxf +++−= 23),(  

Necessary first order Conditions:  
013),( 2

1 =++−= yxyxf  

02),(2 =+= yxyxf  

Plug in yx 2−=  into first eqn to get 0112 2 =++ yy  so 3/1=y  or 4/1−  

Saddle point: 
Max in one axis, but in in 
another 



Plug back in to yx 2−=  to get two stationary points: )3/1,3/2(−  and  )4/1,2/1( −  
Now look at second order conditions: 

xyxf 6),(11 −=  

1),(12 =yxf  

2),(22 =yxf  
Compute Hessian at the two points 

)3/1,3/2(−  07
21

14
>==H   �  Minimum 

)4/1,2/1( −  07
21

13
<−=

−
=H  �  Saddle Point 

 
Example: Three functions (a) 44 yxz −−= , (b) 44 yxz += , (c) 33 yxz +=  

(a) Stationary points: 
04 3

1 =−= xz  

04 3
2 =−= yz   �  (0,0) is stationary point  

2
11 12xzA −== , 012 == zB , 012 2 =−= yC  

So at (0,0), H = 0 
(0,0) can be either min, max or saddle point 
Look at function... 0)0,0(),(0,0 =<�≠∀≠∀ zyxzyx  so it's a max 

(b) & (c) are similar, i.e., (0,0) is stationary oint with H = 0 
For (b) 0)0,0(),(0,0 =>�≠∀≠∀ zyxzyx  so it's a min 

For (c) 0)0,0(2)1,1( =>= zz  and 0)0,0(2)1,1( =<−=−− zz so it's a saddle point 
 
 
Convex Sets 
S ∈ Rn and x,y ∈ S so x = (x1, x2,..., xn) and y = (y1, y2,..., yn) 
S is convex set if z = (1 - λ)x + λy ∈ S ∀ λ ∈ [0,1] 
(i.e., line segment connecting x and y resides in S) 
Example: budget set: Pxx + pyy ≤ I  (x ≥ 0, and y ≥ 0) 
Example: Cobb-Douglas production or utility functions: ba LAKLKf =),(  (K,L ≥ 0, a > 0, b ≤ 1) 

Level curve: cLAKLKf ba ==),(  

So ab
a

L
A

c
K /

/1
−

�
�

�
�
�

�=  

1)/(
/1

−−−
�
�

�
�
�

�=
∂
∂ ab

a

L
a

b

A

c

L

K
 

01 2)/(
/1

2

2

>�
�

�
�
�

� −−
�
�

�
�
�

� −
�
�

�
�
�

�=
∂
∂ −− ab

a

L
a

b

a

b

A

c

L

K
 so it's a convex set 

Facts of Convex Sets: 
1) If S1, S2,..., Sn are convext sets, nSSS ∩∩∩ �21 is a convex set 

2) If S2, S2 are convext sets: { }21,:),( SySxyxS ∈∈= is a convex set 



(Cartesian Product: 21 SSS ×=  
 
 
 
 
 
Convex Function 
f(x) defined on convex set is 

Concave if [ ] )1,0(,,)()()1()1( ∈∈∀+−≥+− λλλλλ Sfff yxyxyx    

Convex if [ ] )1,0(,,)()()1()1( ∈∈∀+−≤+− λλλλλ Sfff yxyxyx    
Strictly if using > and < 

A linear function is both concave and convex, but is neither strictly concave nor strictly convex 
 
 
 
 
 
 
 
Formally 
f is concave { }yfSyM f ≥∈= )(:),( xxx  and  is a convex set 

f is concave { }yfSyM f ≤∈= )(:),( xxx  and  is a convex set 

 
 
Jenson's Inequality 
Discrete and continuous verisons 
A function f of n variables is concave on a convex set S ∈ Rn iff ∀ x1, x2,..., xn ∈ S and λi ≥ 0 with 

1
1

=�
=

n

i
iλ : )()()()( 22112211 nnnn ffff xxxxxx λλλλλλ +++≥+++ ��  

 
 
 
 
 
 
 
 
 
Continuous Functions 
Any function obtained by adding, substracting, multiplying, dividing or composing (function of a 

funciton) some continuous functoins is also a continuous function 
(We've been assuming this, but hadn't written formally yet) 
 
 

S1 

S 
S2 



Last Day!!! 
 
 
Theorem 
f(x), g(x) defined on S (convex set) ∈ Rn 

a) if f, g are concave and a ≥ 0, b ≥ 0 � )()()( xxx bgafG += is also concave 

b) if f, g are convex and a ≥ 0, b ≥ 0 � )()()( xxx bgafG += is also concave 

c) if )(xF is concave and increasing & )(xf is concave � ))(( xfFU = is concave 

d) if )(xF is convex and increasing & )(xf is convex � ))(( xfFU = is convex 

e) if f, g are concave � ),min()( gfH =x is concave 

f) if f, g are convex � ),max()( gfH =x is convex 

g) for a & b, add a + b > 0, & f, g strictly, concave/convex � )(xG is strictly concave/convex 
 

Proof of a: 
Pick S∈yx,  

[ ] [ ] [ ] ≥+−++−=+− yxyxyx λλλλλλ )1()1()1( bgafG  

[ ] [ ] =+−++− )()()1()()()1( yxyx ggbffa λλλλ  

[ ] [ ] )()()1()()()()()1( yxyyxx GGbgafbgaf λλλλ +−=+++−  
Proof of c: 

[ ] [ ][ ]yxyx λλλλ +−=+− )1()1( fFU  

Since f is concave: [ ] )()()1()1( yxyx fff λλλλ +−≥+−  

Since F is increasing: [ ][ ] [ ])()()1()1( yxyx ffFfF λλλλ +−≥+−  

Since F is concave: [ ] ))(())(()1()()()1( yxyx fFfFffF λλλλ +−≥+−  

By def: )()()1())(())(()1( yxyx UUfFfF λλλλ +−=+−  
So U is concave 

 
 
Gradient Refresher 
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∂
∂
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nx

f
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f
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f
f �

21

)(x  

( )00
22

0
110 nn xxxxxx −−−=− �xx  

 
 
Theorem 
Let f defined on open convex set S 

a) f is concave ⇔ )()()()(
1

0
00 xxxx −⋅∇=−

∂
∂≤− �

=

Fxx
x

f
ff

n

i
ii

i

 

b) f is strictly concave ⇔ �
=

−
∂
∂<−

n

i
ii

i

xx
x

f
ff

1

0 )()()( 0xx  

c) f is convex ⇔ �
=

−
∂
∂≥−

n

i
ii

i

xx
x

f
ff

1

0 )()()( 0xx  



d) f is strictly convex ⇔ �
=

−
∂
∂>−

n

i
ii

i

xx
x

f
ff

1

0 )()()( 0xx  

 
Proof of a: 

Suppose )(xf  is concave 

)()()1())1(( 00 xxxx fff λλλλ +−≥+− = 

)()()( 00 xxx fff λλ +− = )()(()( 00 xxx fff −+ λ  

=
−+−

≤−
λ

λλ )())1((
)()( 00

0

xxx
xx

ff
ff

λ
λ )()(( 000 xxxx ff −−+

 

Let ))(()( 00 xxx −+= λλ fg  

So rhs of inequality is now: 
λ

λ )0()( gg −
 

λ
λ

λ
)0()(

lim)0(' 0

gg
g

−= →  

)()()()(' 0
1

0' xx −⋅∇=−⋅=�
=

fxxfg
n

i
iii λλ  

Suppose )()()( 00 xxxx −⋅∇≤− fff  

For brevity let xxz λλ +−= 0)1(  be a point between x and x0 

)()()()( 00 zxzzx −⋅∇≤− fff  (tangent going towards x0) 

)()()()( zxzzx −⋅∇≤− fff  (tangent going towards x) 

Multiply first ineq by (1 - λ) and second ineq by λ and add them together 
[ ]zxzxzzxzx λλλλλλλλ −+−−−∇≤−+−−− )1()1()()()()()1()()1( 00 fffff  

[ ]zxxzzxx −+−∇≤−+− λλλλ 00 )1()()()()()1( ffff  

[ ] 0)()()()()1( 0 =∇≤−+− 0zzxx ffff λλ  

xxzxx λλλλ +−=≤+− 00 )1()()()()1( fff  so )(xf is concave 

 
 
Theorem 
Let f defined on open convex set S ∈ Rn with f ∈ C2 (i.e., continuous first and second order 

derivatives); x0 is an interior point of S 
a) If f is concave, x0 is max ⇔ x0 is stationary point (all first order derivatives = 0) 
b) If f is convex, x0 is min ⇔ x0 is stationary point (all first order derivatives = 0) 
 
Proof of a: 

0x =∇ )( 0f  

0xxxxx =−⋅∇≤− )()()()( 000 fff  

)()( 0xx ff ≤ so x0 is max 

 
 

x 

f '(x)⋅(x-x0) f(x) 

x0 
f(x0) 

f(x) - f(x0) 



Theorem 
),( yxf ∈ C2 and domain S is open and convex 

a) If f is concave ⇔ 0'' ≤xxf , 0'' ≤yyf , 0''''

''''

≥
yyyx

xyxx

ff

ff
 

b) If f is convex ⇔ 0'' ≥xxf , 0'' ≥yyf , 0''''

''''

≥
yyyx

xyxx

ff

ff
 

c) Strictly convex/concave... remove = from ≥ and ≤ 
 
 
Theorem (Sufficient Conditions for Global Extreme Points) 
If this happens, you have a max or min 

),( yxf ∈ C2 and domain S is convex with interior, stationary point ),( 00 yx  

a) Syx ∈∀ ),(  0'' ≤xxf , 0'' ≤yyf , 0''''

''''

≥
yyyx

xyxx

ff

ff
 ⇔ ),( 00 yx is global maximum 

a) Syx ∈∀ ),(  0'' ≥xxf , 0'' ≥yyf , 0''''

''''

≥
yyyx

xyxx

ff

ff
 ⇔ ),( 00 yx is global minimum 

 
 
Theorem 
Function defined on a convex set is both concave and convex iff it is linear  

(i.e., has form: bxaxaxabf nn ++++=+= �2211)( axx ) 

 


