Logic

Sentence - statement that can be determined to be either true or false; 3 > 2
Sentential Function - contains a variable which means it may or may not be true (e.g., X > 2);
can be transformed into sentence by substituting value for variable
Quantifiers
Universal - "for all", O
Existential - "there exists", [
Negation - "not", ~
Conjunction - "and", A, both parts have to be true; e.g., 3> 2 A 3 is an integer is true
Disjunction, "or", V, one part has to be true; e.g., 3 > 2 V 3 is negative is true
Inclusive - no restrictions; both parts can be true: (pV q) V (p A Q)
Exclusive - if one part is true, both parts can't be true: (p V) A ~(p A Q)
Implications - "if... then"... p = q
Antecedent - p
Consequent - q

P a4 p=q
T T T
T F F
F T T
F F T

* Can't prove anything if antecedent is false
Sufficient - if (p = q) is true, we know if p is true, then q is true so p is sufficient for g
Necessary - if (p = q) is true, if we know g is true, we can't say anything about p; q is
necessary for p, but not sufficient
Necessary and Sufficient - p = q; "if and only if", "iff"; means (p = q) A (g = p)
Truth Table - look at every possible combination

Plda| pAg | PVA | p=q | ~P
T T T T T F
T|F F T F F
F|T F T F T
FIF F F F T

Laws - sentences that are always true; used to derive theorems
Identity - Op, p=p
Syllogism - transitivity; (O p,) (P=> g A@=nN)=>{pP=1)
Noncontradiction * - ~(p A ~p)
Excluded Middle * - p V ~p; no such thing as half true or half false
Tautology-pAp=p
pVp=p
Commutative -pAq = gAp
pvVgeqVp
Associative -pA QAT = (pPAQArLpV(QQVrDN = (pVgVr
Distributive -[pA(QV ] = [(pPAQ)V (pAT)]
[PV@ADN] = [(PVa APV
DeMorgan's*-~(pAq) = (~pV ~Qq)
~(pVa) = (~pA~q)
* used to do proof by contradiction
Example: O p,q p /A g = p; use truth table to show this statement is a law (always true)
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pP=4q
Converse-gq=1p
Inverse - ~p = ~q
Contrapositive - ~q = ~p
~P=09) = pA(p=-0q)
Double Negation - ~~p = p
Original statement and contrapositive are equivalent (as are converse and inverse)

Rules of Inference
Substitution - Ox, Oy x +y = 5; plug in any constant for x and statement is still true
Detachment - p = q, if you know p is true, then g has to be true

Proof - start with true statement and use various laws to show your desired conclusion is true

Deductive - look only at logical rules and structure of argument (truth depends on truth of
initial assumption)

Contradiction - assume ~p and try to get contradiction which implies assumption is wrong so
p must be true

Construction - use rules of inference to get p without making assumptions; also called direct
proof

Inductive - look at past and draw conclusions; not used in formal proofs

Assumptions must be:
Independent - assumptions shouldn't interfere with each other; should be able to prove an
assumption from subset of assumptions
Consistent - if assumptions prove p, they shouldn't be able to prove ~p
Complete - should be able to prove true or false; if you can't, something is missing
Exists - can prove it's true, but you may need to prove it exists

To prove p=(q
a) Assume p, show g (conditional proof)
b) Assume ~q, show ~p (contrapositive proof)

Toprovep = Q
a) Showp=qgandq=p
b) Showp = qgand ~p= ~q
c)Showp=a=q=b=p
d) Showp = a = b = @

To prove X, p
Pick an arbitrary x and show p

To prove [X, p
a) Proof by contradiction (assume [x, ~p and find some x where ~p is false)
b) Construct p from some x



Proof by Induction - (not accepted by everyone)
Show On, p,
Start by showing p;
Show Ok (Pk = Pk+1)
Example: sum of first n odd numbers if n?
lfn=1,1=1°
Assume 1+ 3+ 5+ ... + (2k-1) = k?
1+3+5+...+(2k-1)+2k+1=?(k+1)*
k? + 2k + 1 = (k + 1)2... this is true
Example: the largest number n* is 1
Assume n* > 1, then n*2 > n* so n* can not be greater than 1
Do same thing for n* <1
Valid proof, but antecedent assumes largest number exists... with false antecedent, you can
prove anything



Real Numbers

Natural Numbers - all positive whole numbers; 1, 2, 3, ...

Integers - zero and all positive and negative whole numbers; 0, 1, +2, ...
Rational Numbers - can be written a/b, where a & b are integers
Irrational Numbers - can't be written as rational numbers (e.g., sqrt(2), 1)
Real Numbers - include both rational and irrational numbers

Intervals

(a,b) - open interval; any number between a and b, excluding aand b (a< x < b)

[a,b] - closed interval; any number between a and b, including end points (a< x < b)
(a,b] - half open; any number between a and b, only includes one end point (a < x < b)
[ab)-a<x<b

Absolute Value

|ﬂ_ a ifa=0
-a ifa<o0

X <ca=-asx<a

Powers
a'= a/a/d.[a (nfactors)
a"=va"
agd=4d"*
(ar)s = al'S
a¥? = Ja (valid if a> 0)
Jab =+/a+b
a_da
b b
alln - Q/a
aP? =(a"")P =(a”)"? =Ya® (paninteger, qa natural number)
(abC)S: SmSS

Algebra Rules

atb=b+a (-a)b = a(-b) = -ab
(@atb+c=a+(b+c (-a)(-b) = ab

a+0=a alb+c)=ab+ ac
a+(-a)=0 (a+ b)c=ac+ bc

ab = ba (a+ b)?= &+ 2ab + b’
(ab)c = a(bc) (a-b)*= a’-2ab+ b’
1fh=a (a+ b)(a-b) = a*- b’

aa'= 1 (for a #0)



Inequalities

a>bandb>c=a>c

a>bandc>0=ac>hc

a>bandc<0=ac<hc

a>bandc>d=a+c>b+d

a> b= -a<-b (direction of inequality reversed if both sides multiplied by negative number)

Relations
Relations (R = "relates to")
xRy (xis at least as good as y) and y R x (y is at least as good as X)
Preferences (P = "preferred to")
x Py means y P'x
{(x,y) : xR y}... order is important; designates preferences



Sets

Set - grouping or collection of objects, S={a, b, c} or S= {typical member : defining properties},
e.g., B={(xy) :px+gy<sm, x=0,y=0}

Element - an object in a set; also called members; x 0 S

Subsets - A B if every member of A is also a member of B
Proper Subset - ADBmeans A Band B A)

Equal Sets - each element of set A is an element of set B and each elopement of B is an
elementof A;i.e., A=B - AOBand BOA

Null Set (O) - empty set; set with no elements; O O of all sets

Universal set (U) - set that contains everything; can define your own universal set in the context
of what you're doing (e.g., can only have 0 and 1 in U)

Complement (S°) - x 0 S iff x 0 S sometime written as S°y, complement of set Swith respect to
universal set U

Union - elements that belong to at least one of the sets A and B; like AND in logic
AOB={x:xOAorxOB}

Intersection - elements that belong to both A and B; like OR in logic
AnB={x:xOAandx OB}
Disjoint Sets- An B=10

Minus - elements that belong to A, but not to B
A\B={x:xOAandx OB} ={x x0(An B9}

0@C0®

CUOA AUB AnB

Partition - sets form a partition if they are pairwisely disjoint; the union of the partitions makes up
the original set and the intersection of any two patrtitions is [; used for probabilities in
econometrics

A
R, S T partition A if:
ROSOT=A
RNS=RnT=SnT=0

Product - gives ordered pairs (x,y) 0 Sx Tsuch thatx 0 Sandy O T; e.g., S={1,2} and T = {3,4},
then Sx T={(1,3), (1,4), (2,3), (2,4)}



Rules

SOS=S

SnS=S

SOC=U

SnSC=01 (law of contradiction)
SNnDHnZ=Sn(Tn2D=(SnDHnT (commutative law)
SNn(AOB=(SnAO(Sn B) (distributive law)
IfSOTand TOVthen SOV (transitivity)

Any two sets must relate to each other in one and only one of the following ways:
1) Identical (S=T)
2) Disjoint (Sn T=10)
3) SO T (proper subset)
4) T O S(proper subset)
5)Sn Tz0O, but SO Tand T O S(intersect, but neither is a subset of the other)



Functions

Function - rules that assigns a unigue real number, y, to each number, x
y =f(X) ("y is a function of x")
f: x - y ("function f maps x to y")
X = independent variable, exogenous variable, or argument of the function
y = dependent variable, endogenous variable
Domain - all values of x for which the function gives a meaningful value
Range - the set of values that a function assumes
y = X% is a function
y = sqrt(x’) is not a function
Graphs - shows all ordered pairs (x,y) that satisfy the function

Implicit Functions - determined by some property
X +y =27

Explicit Functions - y is explicitly defined as a function of the independent variable
y = sqrt(27 - )

Constant Functions - y doesn't change based on x; horizontal line on a graph
Linear Functions-y=ax+b

Slope - a = (y2 - y1)/(x2 - X1)

y-Intercept - b
Linear Inequalities - B={(x,y) : px + gy < m}

Increasing - [0 Xq, X, X1 > Xo = f(X1) > f(Xo)

Weakly Increasing - use = instead of >; also called non-decreasing
Decreasing - 0 Xy, Xo, X1 < X2 = f(X) < f(X2)

Weakly Decreasing - use < instead of <; also called non-increasing

Correspondence - domain points are mapped to a subset of the range

Solving Equations - find all values of the variables for which the equation is satisfied
Two Techniques - do the following to both sides of the equality

(a) add (or subtract) the same number

(b) multiply (or divide) by the same number (£ 0)
Parameters - constants

Polynomials

-b++/b? - 4ac

2a

Quadratic Formula - forb?-4ac=0andaz0,a¢+bx+c=0 < X=

n" Order - 8, + a, X" + ... + aux + ap; can have up to n distinct roots



Summation
q

Zai =8, tag, teeta,
i=p

d(a+b)=>a +> b (additiviy property)
i=1 i=1 i=1

an,- = CZai (homogeneity property)

Useful Formulas
Di=1+2+--+n :in(n+1)
= 2

3k :%n(n+1)(2n+1)

i=1

il :En(n+1)}2

i=1

=

@ -b" =(a-b)@*+a™b+a"p’+ ... +b™Y

m m m
(a+b)™"=a" +( jam‘lb +.. +( jabm‘1 +( b™ (Newton's binomial formula)
1 m-1 m

Ot (5 (e ()



Limits and Continuity

Sequence - function from positive integers to real numbers; e.g., Xx,=n+l, n=1,2, ...
Limit - sequence has a limit if it converges to a real number L

liMy_ X, =L

Example - x, = 1/n; lim,_ o X, =0

Rigorous Definition

f(x) has limit (or tends to) A as x tends to a, and write lim,_, f(X) = A, if for each number € >0
there exists a number 6 > 0 such that [f(X) - A| < € for every x with 0 < |x-a| < d

In English - lim,_, f(X) = A means that we can make f(x) as close to A as we want for all x
sufficiently close to (but not equal to) a

Using It - if asked to use the definition to prove a limit exists, you first assume any € > 0 and
solve [f(X) - A< efor x. Then use 0< [x - a|] < dto get a value for d in terms of €.

&

Figure 6 For every «, there is a 4, so lim

Theorems
1) If a sequence {X,} is non-decreasing ([J n X1 = X,) and bounded from above (0L s.t. L > x, [
n), then the sequence {x,} must converge
2) If a sequence {x,} is non-increasing (! n X1 < X,) and bounded from below (L s.t. L < x, O
n), then the sequence {x,} must converge
3) If a sequence is not monotonic, but has bounds, then the sequence may not converge, but it
has convergent subsequences
Example: x, = 1 when nis even and -1 when n is odd; can't find a o to satisfy definition for
€ < 1, but the subsequences are bounded at 1 and -1
3a) f all the subsequences have the same limit, then the sequence has a limit
Example: x, = 1/n when nis even and -1/n when n is odd; converges to O
4) If a sequence is not bounded, it will diverge (but can't say a sequence that is bounded
necessarily converges... see #3)



Rules for Limits
If lim_,f(xX) = Aand lim,_, g(X) =B, then
a)lim_, A=A
b) lim._.(f(xX) £ g(x)) =A+B
c) lim_a (f() [o(x) = A B
d) lim,_, (f(X) / g(X)) =A/B (if B£0)
e) lime .. (f(X)™ = AP (if AP is defined)
f) If functions f and g are equal for all x close to a (but not necessarily at x = a), then
lim,_ 5 f(X) = lim,_ . g(X) whenever either limit exists

Special Cases

Don't Exist - vertically asymptotic functions (x )

One-Sided - value depends on which side you approach the limit from
Infinite Limits - horizontally asymptotic functions

Vector Notation

X = (X1, X2, ooy X

Sequence of vectors - converge when |L - X,| gets smaller
Euclidean Distance - d(x,y) = sart((X. - yo)? + (% - V»)* + ...)
Taxi Distance - d(X,y) = |X. - V4| + X2 - Yo + ...
?? Distance - d(x,y) = max(|X; - v4|, X2 - Y, ...)

Neighborhood

Neighborhood of x is a region around that point with certain distance, [ (x,g) = {y: d(x,y) <&} ...
i.e., a circle centered on x with radius €

Limit Point - number x is a limit point of a set Sif every € neighborhood of x contains a point of S
other than x
Finite sets never have limit points

Interior Point - x is interior to Sif Je > 0, such that if y O [(x,€) theny O S(i.e., O(xg) 0 9
Every interior point is a limit point, but not the other way around

Open Set - Sis an open set if every element is an interior point

Closed Set - a set is closed if it contains all of its limit points (points on border are limit points of
open sets even though the points aren't in the set)

Special Cases - only two sets can be both open and closed at the same time ([0 and U)

If Sis open, then S° is closed

Limits of Functions (using neighborhoods)
f(x) has limit L at a if for each number € > 0 there exists a number 6 > 0 such that if x J [J(a,0)
then f(x) O O(L,)



Continuity
Continuous - graph of the function has no breaks; formal definition:
fis continuous at x = aif lim,_, f(xX) = f(a)
Conditions:
1) function f must be defined at x = a
2) the limit of f(x) as x tends to a must exist
3) this limit must be exactly equal to f(a)

If only condition 1 isn't satisfied, it is a "removable" discontinuity
') Vo

Figure 1 A continuous function Figure 2 A discontinuous functior

Some continuous functions

f(X) = ¢ (a constant)

f(x) =x

Polynomials (they're a sum of continuous functions)

R(X) = P(x)/Q(X) (where P(x) and Q(X) are polynomials and Q(x) # 0)

Intermediate Value Theorem
Let f be a continuous function for all x. Let f(x,) = a and f(y,) = b where

o T

a<b, then for any c between a and b, [Ix between x, and y, such
that f(x) =c
Proof 1 (outline) -

a) Create two sequences by if f[(X, + Yo)/2] < cthen

X1 = (X +Yo)/2, else yl = (
b) Show the sequences converge at ¢
Proof 2 (outline) -
a) Define A={x: f(x) 2cand X, < x<y,} and B={x: f(X) < c and x, < X<y}
b) Show A and B are closed sets
c) ShowAn B# 0
d)OxOANnB...f(x)<candf(x)=csof(X)=c

Properties of Continuous Functions
If f and g are continuous at a, then
a) f+ gand f - g are continuous at a
b) f /g and f/ g (if g(a) # 0) are continuous at a
c) [f(X)]”@is continuous at a if [f(x)]® is defined
d) f(g(x)) is continuous at a if both f(x) and g(x) are continuous at a (composites)

Limits of Continuous Functions
Just plug in value rather than taking the limit

Continuity and Differentiability
If f is differentiable at x = a, then f is continuous at x = a

X Yo



Differentiation

Derivative - use to describe rate of change (to study of how quickly quantities change over time)
Slope - f'(a) = slope of the tangent to the curve y =f(x) at the point (a,f(a))
Secant - straight line connecting two points on the graph of a function
Tangent - limiting straight line toward which the secant tends as you hold one point
constant and move the other one closer; say first point is (a,f(a)) and second point is
(a+h, f(a +h)); find slope of tangent by taking limit as h — 0 (eqn below)

Py f'(a) =lim, ,@*N=T(d)
A Ny E h
Newton (differential) quotient of f

L Equation for tangent at (a,f(a)) is
y-f(a) =f'@)(x-a)
Figure 1 fla)=1/2

Derivative only exists at a point if there is a unique tangent (i.e., no kinks)

Hard Way (using definition of tangent to compute a derivative)
1) Add h (h # 0) to a and compute f(a + h)
2) Compute the corresponding change in the function value: f(a + h) - f(a)
3) For h# 0, form the Newton quotient (egn above)
4) Simplify the fraction as much as possible; should cancel h from the denominator
5) Take limit of fractionas h - 0

Example:
f(x) =
fa+h) - f(a) _(a+h)”-a* _a’+2ah+h’-a’ _h*+2ah _ h(h+2a) —h+2a
h h h h h

f'(a)=Ilim, ,h+2a=2a

Notation

f (x)———d fax =900

df ( )/dx——f(x)

Increasing & Decreasing (revisited)

f'X)=200x0Ointerval | = fisincreasingin | (strictly increasing if > 0)
f'X)<00x0Ointerval | = fis decreasing in | (strictly decreasing if < 0)
f'X) =00xOinterval | = fis constantin |



Other Interpretations
Rate of Change - change in y per unit change in x
Instantaneous rate of change of f at a is f '(a); (e.g., anything labeled "marginal” such as
"marginal cost")
Relative (or proportional) rate of change of f at a is f '(a) / f(a); usually quoted as a
percentage per unit time

Continuity
Continuity is necessary but not sufficient for derivatives to exist
If a function is differentiable then it is continuous (diff = continuity, but not continuity = diff)

Rules for Differentiation
f(x) = A(constant) = f'(X) =0

y=A+fX) = y =f'(X) (additive constants disappear)
y=Af(X) = y = Af'(X) (multiplicative constants are preserved)
f(x) =x¢ = f'(x) =ax*" (power rule)

FO) =) £ 90 = F'(}) =100 £9'(¥)
F() =1(x) [o(x) = F'(9 =f'(x) LH(x) +1(x) L5'(¥)
F(X) = w — F'(X) - fl(x) [g(X) — f(X) [ gl(x)

(9’
ﬂ = ﬂ GCLU (chain rule)
dx du dx
y=u* = y =au*'u (generalized chain rule)
F(X) =f(gx) = F'®) =f'@())d(x) (still the chain rule)

Examples:
f(x) = (2x + 1F, leta= 2x+ 1so0 f(x) =&’
f'(x) =f'@)@2x+ 1) = aR) = 4a=4(X+ 1)

z=a(C+ 2)° + 40C + ), lety =x*+ X so z=ay’ + 4y
dzldx = dz/dy@y/dx = (3ay? + 4)BX + 2) = A0E + )2 + 4)(3 + 2)

f(X) = (X + 1P + 2(X + 1) + 3)(2¢ + 1), lety = 2 + 1
f'(x) = [5(2x + 1)(2) + 8(X + 1(2)](2¢ + 1) + &((2x + 1 + 2(x + 1)} + 3)



Implicit Differentiation
F(x,y) = c.... implicit function g allows you to write y in terms of x (i.e., y = g(X) so F(x,g(x)) =c)
If two variables x and y are related by an equation, to find y"
a) Differentiate each side of the equation with respect to x, considering y as a function of x.
(Usually, you'll need the chain rule)
b) Solve the resulting equation for y'
Example: y* + 3¢y = 13
2) 3y’y + (6xy + 3¢y) =0
b) y' = -2/(* +y?)

Example: m(X,y) = x\/y =2
Letf(x) =y
m(x, f (X)) =x/f(x) =2

. . 1

diff bothsideswrt x :10/ fX) + X[(———f'(x) =0
) 57700 (x)

mult bothsidesby 2,/ f (x) : 2f (x) + x[f'(x) =0

f'(x)=-2f(X)/x=-2y/Xx

Example: ¥*-1x+y*+ 14/ +85=0
diff both sides: 2x - 12 + Z/{dy/dx) + 14{dy/dx) = 0
(2y + 14)dy/dx) = 12 - X
dy/dx = (6 -x)/(y + 7)

Check for validity:

Rewrite itas x¥*-12 +36 #° + 14/ +49=0=%-6F + (y+ 7F =0

Only solutionisx=6and y = -7

Substitute that solution into dy/dx = (6 - 6)/(-7 + 7) = 0/0. so dy/dx is not valid

(If there is only one point that is a solution, you have an infinite number of tangents so there
isn't a valid derivative.)

If it was x* - 12 +y? + 14y + 84 = Q you can get (x- 6 + (y + 7 = 1, a circle with center (6,-7)
and radius 1. You can differentiate that so now dy/dx = (6 -X)/(y + 7)is valid

if it was X° - 12 +y* + 14y +86 = Q you get (x - 6Y + (y + 7F = -1... a function with no solution
so dy/dx again is meaningless.



Inverse Functions
y =f(x), maps xtoy
Inverse function f *(y) = x, maps y to x, but only exists if f(x) is one-to one

X y
]
|

1-to-1 Not 1-to-1

NOTE: f *(x) # % write that as (f (x))™
X
Finding inverse - swap variables in function (i.e., use y for x and x for y) and solve for x

Theorem: If fis continuous and strictly increasing (or strictly decreasing) in an interval |, then f
has an inverse function g, which is continuous and strictly increasing (strictly decreasing) in
the interval f(I). If Xy is an interior point of | and f '(xo) # 0, then g is differentiable at y, = f(Xo)
and g'(yo) = 1£'(xo)

Given y =f(x) and f "(y) = x, we have identities y = f(f (y)) and x = f (f(X)) so you can take a
derivative and solve for derivative of f *
x = f(f(x)
Differentiate both sides: 1 = f™)'(f '(x)
Solve for (f ) (f™) = 1F'(x)

Example
f(x) =2+ 5...f'(X) = 2s0 (f-1)' = 1/2
Check it: f-1(x) = (x - 5)/2... {-1)' = 1/2

Approximations (when x is close to a)
f(x)=f(a) +f'(@)(x - a) (Linear)

f(x) = f(a) +f ‘(@)X - a) + 1/2f "(@)[{x - a)° (Quadratic)

f(x)=f(a)+ fll('a) (x-a)+ f”2(!a) (x—a)’+---+ f‘”r)“(a) (x-a)" (Polynomial or Taylor)



Exponents and Logarithms

Exponential Functions
Quantity that increases (or decreases) by a fixed factor per unit of time is said to increase (or
decrease) exponentially; if fixed factor is a, then

x = Ad'

Variable (factor or base) is a

Power is t

Cases of a
a=1means x is constant
a>1, xis increasing
a<1, xis decreasing

Csraph ol fir) La® (@ { Graph of Fir) Vi’ (a 1) Graph of fir Aha" 1) ] 1)

Logarithms
Logarithms is inverse of exponential function

y=logpx (x>0)
If you leave out the b, assumption is log i

Rules
bb’ = b*) log,xy = logpx + logpy | _
b’ = b logsXly = logy X - logpy o
(b)Y = b log, X< = klIbg , X

log, b* =X
l0gyx = log, x _ Incdnx _Inx

“log.b Inb Inc Inb

c

log,c = 1/log:b

*xx NOTE: logp (X +Y) ZlogpX + logpy ****



Why use it:

Questions of form a* = b (e.g., "at present rate of inflation, how long will it take the price level to
triple”, growth, compound interest)

Solving b’ =&
Take log of both sides: log,b’ =log,a* = y=xlogpa

Cobb-Douglas functions: y = x*/2’
Take log of both sides: Iny = In(x*’) =allhx + bllh z (easier to work with)

Elasticities - if y = (), & elasticity of y with repect to x

oY =T ()

Eyx == —
Ty dxo (X
dy/y _ %changeny
dx/x % changen x
dIny:dInyB(Ldex _X
dlnx dy dx dinx vy

gy
dx

Natural Logarithm

e=Ilim,_ (1 + 1h)"= Zl'z 2.7182818. (irrational number)
j=0 J*

In = log.
Special Cases

In1=0

Ine=1

=x x>0)
In€ =x

In x

log, x=—
O Inb

Derivatives
d 1 d _ (¥
&(Inx)—; &(m f(x)= 00

%(ex):eX %(e”x’):ef(x) F'(x)

Logarithmic Differentiation
Sometimes easier to use In or e to take derivatives
Examples:

In x
y = logp ... use conversion log, X = —

Inb

dx dx  Inb  dx Inb x

dy _ d(m 1 dnx) _ 1 1



y =b"... take In of both sides: Iny =xinb

diny) _0¢ 1

dy ady y
Use inverse function rule

Y yinb=b*Inb

adx
Examples using the chain rule:
y=e”
Letu=¢"
ﬂ = ﬂ |:H£ =" [&* = e(ex+x)
dx du dx

y = In(In(Inx)))
Letz=Inx,w=1Inz y=Inw

Y ywedz 1gd_1pid. 1 14

dx dw dz dx w z x Inz Inx x In(Inx) Inx X

y = (ax? +bx) @ On(x® +3x)
Take In of both sides because In(ABC) =InA + InB + In C (must have a, b, x > Q)
z=Iny= In(ax2 + bx)+ xIne+ In[ln(x5 + 3x)J

5x* +3
dz _ 2ax+b x° + 3x
— = +1+
dx ax® +bx In(x® +3x)

Proofs
Prove: i(In X) = 1
dx X

In[X+ hj
X ) _iim In@+ h/x)

dinx) _ . Inexrhy—Inx _ .
h

dx h-0 h h-0 h-0
Multiply by 1 =x/x
im 21+
hoX h x/h
Now substitute m =x/h; note limit h -~ 0 is equivalent to m — o
(Could use L'Hopital's Rule instead)

. 1 1) 1. 1\"

lim —Dmln(1+—j:—llmmmln(1+—j
m X m

Because In is a continuous function, rewrite as

m-o X



1, (. 1\ 1 1
ZIn|{ lim 1+ = =Zlne==
X oo m X X

d (%)
&(ln f(X))—W

Use chain rule (same as proof for %)

Prove:

X

Prove: d (eX )

=e

dx
X x+h _ X X(ah _
—d((;):limhﬁo—e =& =im, , € (eh 1)

Use the inverse function rule: y = €, take In of both sides: Iny = In€ =xin e =x
Take derivative of both sides with respect to y
diny _ dx
dy dy
Use derivative of In
1 _dx

y dy

Use inverse function rule:
ﬂ:y SO _d(e ):eX
dx dx

d f(x) f(x) 1
Prove: —\e =e'""™W O '(x
ve: (') (%)

y - ef (x)
Version 1:
Take In of both sides: Iny =f(X)
Take derivative of both sides: d(Iny) = d(f(x))

Tay=tmxm Y=y =e ™ k(v
y dx

Version 2: (chain rule)
Let u=f(x), soy=¢"
Y Y prg=e™ oy
dx du dx



L'Hopital's Rule (and EVT & MVT)

Extreme Value Theorem
Aim is to find points in domain at which function reaches its max and min values
Max - ¢ O D (domain) is a max iff f(x) < f(x) Ox O D
EVT - if fis a continuous function in a closed and bounded interval [a,b], then f attains a
maximum and a minimum value on [a,b]... proof is really hard

a b a c db

Not continuous (EVT max is f(c)
doesn't apply); can find  min is f(d)
min, but no max

Theorem 7.4 (Necessary First-Order Condition)
Let f be defined in an interval | and let X, be an interior point of I. If X, is @ max or min point and
f'(Xo) exists, then f'(x) =0
Proof:
Assume X, is a max point interior to | and f '(xp) exists.
If absolute value of his sufficiently small, (X, + h) O | because X, is an interior point
Since xg is a max, f(xo + h) <f(xg) O h
f(Xo + h) B f(Xo)

f'(x,) =lim,_, h <0,0h>0
f'(%,) =lim, f(X°+hr)]_ f(XO)ZO, Oh<0

Therefore f'(x) =0
Proof for min is similar

Rolle's Theorem
Let f(X) be continuous on the interval [a,b] and f(a) =f(b) = 0. If f is differentiable on (a,b), then
Oc O (a,b) such thatf'(c) =0
Proof:
Case 1: f(x) =00 x O [a,b]. fis constant so f'(x) =0
Case 2: [xg O (a,b) such that f(xg) > 0and f '(x) # 0 (can't assume "then" portion of
theorem)
From EVT, f should take a maximum value x* I [a,b]
f(x*) = f(xp), and x* Za and x* # b (i.e., x* not on the boundary)
Since x* is an interior point and is a max, then f'(x*) = 0 (Thm 7.4)
Case 3: xo [ (a,b) such that f(xp) < 0and f '(xo) # O (similar to case 2)



Mean Value Theorem
Let f be a continuous function on [a,b] and have a finite

derivative at every x [0 (a,b) (i.e., function is differentiable),
then Oc O (a,b) such that
£(c) = f(b)- f(a)
b-a
(i.e., f'(c) = slope of line connecting a and b)
Proof: consider the function

909 = £09 - f(a) =& (x-q)

Observe g(a) =g(b) =0

g is differentiable and continuous because it is a function of f (which is differentiable and
continuous)

Oc O (a,b) such that g'(c) = 0(by Rolle's Theorem)

9'(x) = f'(x)—w
-a
Therefore at ¢
g'(c)=0= f'(x)—M, so f'(c) :M
b-a b-a

L'Hopital's Rule
Application of MVT used to examine limit when both numerator and denominator tend to zero

If

(1) f(x) and g(x) are continuously differentiable (derivatives are also continuous);
(2) f(Xo) = 9(Xg) = 0 *** also works for f(xg) = g(Xg) =« or combinations thereof ***
(3) g'(X) # 0in some neighborhood of X,

4 lim,_, ;83 exists
Then
. f(x) _,. f'(x)
lim —Z =[|im
P g(x) g%
Proof:

Let y =g(X) and z =f(X); these functions define a curve z = h(y)

z=1(x) =h(g(x)) O x

Take derivative of both sides and use chain rule on right side

di _dhgg  ch_ (¥

dx dg dx dg g'(x

Consider any x, near %, so h(y,) =z, (i.e., point on the curve)

By MVT Op O (0yy,) such that h(y,) =h(0) +h'(p)(y. - 0) (i.e., slope from 0 to y, equals y'(p))

Therefore, h'(p) = h(yn)/yn = f(x.)/g(X) since y, = g(x,) and h(yn) =z, = f(xy)

. f'(x f(x,
(py = L OCRD _ 104)
g'(x(p))  9(x,)

Note as X, - X then x(p) — Xo since x(p) U (Xn,Xo)

im, 100 iy POCE) ()
" g(x,) g'(x(p)) " g(X,)

(right side from line above; middle when x, close to Xg)



Using L'Hopital's Rule
Usually need it when you're taking the limit of something to a power

lim_, @+ f(m))" =2 where lim_ _ f(m)=0
Trick used in these types of problems is:
Iimmm(1+ f(m))m =lim,, ., gl fm]" = glime..o i+ (m]”

Look at the exponent first:

In[1+ f (m)]
1/m

lim . (mOn[L+ f (m)])=lim . (iittle trick to get L'Hopital's Rule to work)

Use L'Hopital's Rule, first check assumptions:
1) f & g continuously differentiable... in this case f = In[1 +f(M)], g = 1/im
2) f(Xo) = g(%) = 0 (where X, is the limit;  in this case)
Since lim,__ f(m) =0(given), then f(xo =) =In(1 + 0) =In(1) =0
g% =) =0
3) g (¥) £ 0... need to check after applying rule

4) lim_ (%) exists... need to check after applying rule

©g'(x)
So now lim In[l;—/—f(m)] = limit of ratio of derivatives (L'Hopital's Rule)
m
f*(m)
=lim mm =lim w—mzm
-1 N 1+ f(m)
m2

Solve this limit and plug the exponent back into eqn to get answer

Example using f(m) = 1/+/m

Note f'(m) :_?1m‘3’2 %

m _1nry2
- 1 : ) . 1
lim_ . In[1+—| =lm_  -m*-~*—_=lim__ = — o
Am ~

172 m- o
1+m 21@

o 0
SO now e =

Example using f(m)=1/m

; 1 " ; In(1+1/m)™ lim o In(2+1/ m)™
“mmﬂm(l”a =lim_ e =g"me

Look at exponent



lim, . In@+1/m)" =lim___ min@+1/m™=1lim, In(1+1/m)

0

1/m
Use L'Hopital's Rule
_1/(1+1/ m)
i, M@M)L -1
N 1/m B -1/ m? "7
Check validity of assumptions 3 & 4 (good) @
Sonow el =e 0

Example using f(m) =1/m?

. 1 m . In 1+i2 " lim, o In 1+i2 "
Ilmmw(1+—m2j =lim, .e ( mj =e ( "‘J
Look at exponent:

m In 1+i2
. 1 o 1)_. m
lim. . In 1+F =lim_ . min1+— |=lm_ 6 ————=

m? 1/m
Use L'Hopital's Rule

-2 1
1+~
. m° m?) _ . % 0 _
lim_ . =lim, A =——=0
-1 1 w 1+0
m?
Plug exponent back in 0
e =1

Example using Constant Elasticity of Substitution (CES)
Q=oK™ + (1—a)L'p]_l/p
Find lim ,_,Q

-1/ p -1/ p

eIn[aK “’+(1—a)L“’] — elim/,ﬂ0 InfaK P +@1-a)L"?

lim, ,e"?=lim,

Look at exponent

lim qo_—lln[aK‘p +(1—a)L"’]
Jo

P
Use L'Hopital's Rule
-aK™”InK-(@1-a)L”InL

. Injak ~* + 1~ a) L] aK " + (1-a)L”
—lim,_, 1

allzlwp
-p _ A\ -» _
lim DKFA-QL It _alnK+d-a)ink _ 0wy a-gyinL

p-0 K (1—@ a+(1-90)
Plug exponenttack in




alnK+(1-a)lnL

NKY+nX% _ _InKY? _ 1, ay1-a
e =e =KL

=e
NOTE: if y=K™
Use Iny =-pInK

Differentiate both sides

1ﬂ:—an

y do

O (Don't need to use L'Hopital's rule)

Example
Consider y=a* a>1

z=x'" t>0
Both y and z go to « as x — o, but which one is faster?
X' Iimxawln[g] — eIimxwo(tln x-xIna)
Look at exponent

X

: X' . . .
In[llm oo ] (more elegant, but violates assumption 2 of L'Hopital's Rule
a

: : X : tin x
lim, . Inttinx-xIna)=Ilim, , —({tInx-xIna)=lim,__ x[——ln a} =
X X

: , tin x . tinx . tinx .
lim,_ , xim, |——-Ilna|=cdm, ,|—-Ina|=c[lim, , ——-lim, _Ina|=

X X X

: In x
oo(tllmme—ln aj X
Solve limit In x
. Inx . 1/x . , o
lim, ,—=Ilim,__, =N =0, using L'Hopital's Rule... makes sense from graph:

X

: In x

oo(tllmxm —=1n aj = oot M-Ina) = co(~Ina) = —oo
X

Plug exponent back in
e” =0so a’is faster



Trick:
lim, , f()-g(x)=Ilm,_, f()0im,_, g(x) (if f(x) is continuous)

Undefined terms:
oo[0, oolcb
cofoo, Ofoo, c0/0, 0/0

00 *+ oo

Aside:

X* =XR = (X +X + ... +X)... there are x number of X's

Take derivatives

2x=(1+1+..+1). there are x number of 1's so

2X=X

2=1

Now can show all positive integers are = 1

3=2+1=1+1=2=1

Canshow0=1

1=2-1=2-2=0

Can show fractions = 1

In=11=1

Problem was derivative of product is not equal to derivative of sum... that's why we have the
multiplication rule for taking derivatives

a=b

ab = b?

ab-a’=b*-a’

ab-a)=(pb+a)b-a)

a=b+a

a=2a

1=2

Problem... divided by (b - a), but can't do that because a=b so (b - a) = 0 (division by zero)



Higher Order Derivatives

First derivative is slope of function

fr(x+h) - £'(x)

Second derivative is slope of first derivative f'(x)=Ilim,_, o
(D (y 4 ) — f (D
n-th derivative is slope of (n-1)th derivative f O (x) =lim, , i hk)1 )
Example
X+7
f(x) =
(x) —3
—_— —_— + —_—
f'(x):l[(x 3) (x2 7)[1: 102
(x=3) (x=3)
f'(x)=20(x-3)°
Graphing
y' 2 0= yis increasing
y'= 0= yis convex \/ (think of the "v" in convex)
y'<0=yisconcave [\ (think of a cave)
Inflection Point
y" = 0and y" changes sign; changes from convex to concave or vice versa
concave convex
Ii/xirzsgle A

y'=3x*>00xy=0 < x=0
y'=6Xx >0forx>0;y"<0forx<0;y"=0 = x=0

y'"'=6 (constant)

Example
f f ] f "

X1 X2 X3 X1 X2 X3

Min and Max
If y' = 0 we have a local min if y" > 0 (i.e., convex)
If y' = 0 we have a local max if y" <O (i.e., concave)




Taylor Series Approximations

y=f(2) and z=g(x)

Use chain rule

dy df dz _, ,
YL@

Use multiplication rule

YD g+ @ EEY - g+ 1@+ 97
X dx dx

Taylor Series
Approximation of functions (used in maximization or minimization)
If f(x) is infinitely differentiable for any x. Take a point a

f(x) = f(a)+@(x—a)+w(x—a)2 +...+w(x—a)”
1 2 o

will be exact (=) is you add "+ R"(x,a)"
where R"(x,a)is the remainder and lim,__ R"(x,a) =0

Lagrange Form of Remainders

(n+1) _ a\n+l
[p O (xa) such that R"(x,a) = P)(*~2)

(n+1)!
Proof (by induction)
n =0, need to show R°(x,a) = W

Mean Value Theorem says [p O (x,a) such that f'(p) =

M, which can be
X—a

rewrittenas f(x) = f(a)+ f'(p)(x—a)
(This is Taylor series with n = 0and the R® we wanted to show)

n=1 f(x)="f(a)+ f'(@)(x—-a) +%s(x)(x—a)2, need to show s(x) = f"'(p)
Keep x fixed and define a function g for t O (a,x) by

g(t) = f(X){f(t)+ f'(t)(X—t)+%S(X)(X—t)2}
9(x) = f(X){f(X)+ f'(X)(X-X)+%S(X)(X—X)2} =f(¥)-f(x=0

g9(a) = f(X){f(a)+ f'(a)(X—a)+%S(X)(X-a)2} =f(¥)-f(x)=0



By Rolle's Theorem, Op O (a,x) such that g'(p) = 0 so take derivative of g with respect to t,
then plug in p and set it equal to O

g'(t) =0-[f'(t) + f(O)(x—1) + F(A)(=D) + () (X~ t)(=D)] = =(F"(t) = s(x))(x - 1)
g'(p) = =(f"(p) —s(x))(x-p) =0
Can't have x = p (since p O (x,a)) so that means f''(p) = s(x)

Taylor series is just a polynomial p(X) = a, +a,(X—X,) +a,(X—=X,)* +---+a_ (X—X,)"
1) p(X) = f(X,) i-e., @, = (%)
2) (%) = f'(%) = al+28,(x=X) +-+-+na,(X=%)"" =a, ie, a = f'(x)
3) P(%) = (%) = 28, + 685 (x = %)+ +n(n-Da, (x=x,)" = 2a, ie.,

a, = £"(x,)/2
(n) — nl : — f(n)(xo)
n) p(x,)=na, ie., a, ==
Example
1
f(x)=—
(X) =%
X, =0

Find Taylor approximation for best polynomial
f(x,)="1(0)=1

f'(%) ==0-%°*(-)=1-%° =1
f(x) =-20-x)°(-) =20-x)°= f"(0) =2
fO(x,) =-60-x)*(-) =61-x)"*= f90)=6

FO(0 = 1D () =

So use Taylor series: f(x)= f (0) +

' " 2 3) 3 () 3N
fg-(l))x+f O)x +f X +_._+f X

2 3 nl
2 3 1y n )
Plug in values for derivatives: f(x) = 1+B + 2x + bx FUNLLL S Zx'
r 2 3 n =
NOTE: this is definition of a geometric expansion: » x' = %
i=0 - X
Example
f(x)=¢€"
X, =0

Find Taylor approximation for best polynomial
f(x)=10)=1



f'(x,)=€e" = f'(0)=1
etc... (all derivatives = 1)
Ix I 1 X" _&x
Using Taylor series: f(X)=1+—+—+—+.--+ =
i =1+ 3 n Z(; i
NOTE: this is definition of &% 3" == ¢’

i=0 I*




Unconstrained Optimization

Min/Max

Let f(X) have domain D.
Then c 0D is a maximum pointforfin D = f(x)<f(c) OxOD
Then d O D is a minimum pointforfin D < f(x) >f(d) OxOD
For strict max/min, use < or >.

Stationary Point
Xq is a stationary point for f(x) if f '(Xo) = 0

Example
f(x) =X f(X) = f(x) =x

A

f'X)=X=0=>x=0 =0 f'®=3=0=x%=0
Xo IS Min Xo IS Min Xo IS Min

First derivative test for max/min
Iff'(x)=0for x<candf'(x)<0forx=c= x=cisamax.

n 1] < n 2 n n min.

Proof:
Take a Taylor series around X,

f(X)= F(X) + F'(%)HdXx—X,) +-

R .(X) = £ 1)((’28‘1)_!"0)” for X0 (X, X) or X 01(X %)
Forn=0, f(x)= (%) + F'(R(x=%)= (%) +R (¥
Case 1: X< X, = XU(X,X,)

Now if f'(y)=0 Oy (x,x,) = f'(X)=0

f(x)=f(x,)+ ' (X)(Xx—X%,),and (Xx=x,)<0so f(x)< f(x,) Ox<X,
Case 2: X> X, = XU (Xy,X)

Now if f'(y)<0 OyO(x,,X) = f'(x)<0

f(x)=f(x,)+ f' (X)(Xx—X%,),and (Xx=x,)>0so f(x)< f(x,) Ox=x,
Therefore f(X,) is max point
Proof for min is similar

+ f o (Xo)(x_ Xo)n
n!

+ R (¥)




Extreme Values
If f'(x) exists for every point in |
1) Find all the stationary points: f ' = Qinterior to |
2) Evaluate the function f at the boundary and stationary points.
3) Identify the largest and smallest values of f
NOTE: If f '(X) does not exist for some point(s), then we have to evaluate the function at
these points also

Example
y=x,1=[1,2]

Stationary points...f'=0@ x=0
Evaluate f(-1) = 1,f(2) = 4,f(0) =0
Largest value @ x =2

Smallest value @ x=0

Second Order Conditions
If Xo is an interior point and f '(xo) = 0, then f "(X;) > 0 (i.e., convex) = f'(Xxo +h) > 0and f'(x,-h) <0
(i.e., Xo is min point)

Example

f(x) =x*

f'(x) = 4¢
4°=0=>x=0
f'(x) <0ifx<O0
f'(x) > 0if x> 0... therefore, by first derivative test, this is a min point

f'(x) = 12¢
f"(0)=00x (and only = 0 at x = 0)... by second order conditions, this is a min point

f"(xo) < O(i.e., concave)

Exception - if f "(Xo) = Owhen f '(Xg) = O, we have to find the first positive derivative. If it is an odd
number derivative, then xo is an inflection point
Example
y=x
y=3%
3 =0=x=0
y' = &
6x=0=x=0
y" =6 > 0.. 3rd derivative is odd number so 0 is an inflection point

Inflection Point
cis an inflection point for a twice differentiable function f if there exists an interval (a,b) such that
either
a: f"X)=0 a<x<c b: f"X)<0 a<x<c
f"X)<0 c<x<b f"X)=0 c<x<b
(i.e., if f " changes sign at c, then cis an inflection point); at inflection point, function changes
from concave to convex (or vice versa)



Convexity & Concavity

Def 1: Assume f is continuous on interval | and twice differentiable on 1° interior of I,
fisconcaveinl < f"(x)<00x0O1°
fisconvexon| < f"(x)=200x01°

Def 2: fis concave (convex) if any line segment joining any 2 points is never above (below) the
graph of the function
Concave Convex

_ X—a _ distance form xto a

LetxO(@b)=x=(1-ADa+ibfor A0(0,1)= A =—
b-a distance frombto a

(defining a line

segment between a and b)
Equation for line passing through (a,f(a)) and (b,f(b)) is f(bg
f(b)-f X
y-f(a)= (é_a(a)(x_a) ]f((ag ...........
For point (x,s) on the line, axb
s—f (a) :M(X—a)
b-a
s—1f(a) :w«l—ﬁ)awlb—a)
s- f(a) =w/1(b—a) = A[f(b) - f(a)]

s=([L-A)f(a) + Af (b) this is the point on the line connecting (a,f(a)) and (b,f(b)) at x
f(x) = f ((L- A)a+ Ab) this is the point on the original function at x

Def 3: f(x) is convex if Da,b01, DA D (0,1) f([1-Ala+Ab)< A=) f (a) + Af (b)
" concave " > "
(strictly convex (concave) if < (>) rather than < or 2)

Remark... f is concave if -f is convex
Proof
Since -fis convex — f((L1-A)a+ Ab) < L-A)(-f (a)) + A(—f (b))
Multiply both sides by -1 (changes direction of inequality)
f((1-A)a+Ab) = 1-A) f (a) + Af (b) which is definition of f is concave

Prove test of concavity: f"(X) < 00 x O (a,b) = f is strictly concave by using Taylor series
WLOG (without loss of generality) assume that b >a = (a,b)
WLOG let f"(X) <00 x O (a,b)
f(y=~f(a)+ f'(a)(b-a) +1 f"(p)(b-a)® for pd(a,b)
2«——J —

+
H—/

By assumption (2nd line) f"(p) <0
f(b) = f(a)+ f'(a)(b—a) + (negative term)



w = f'(a) + (negative term)

So f'(a)> M, which means slope at point a is greater than slope of line
—-a

connecting aand b so f is concave based on Def 2

Jensen's Inequality

fisconcave on | = O Xy, X, ..., % O 1 and O A4, Ay, ... A= O with Z)Ii =1, and
i=1
FAX + A%+ + A X)) 2 A T (%) +A,1(X,) +---+ A, F(X,)
(concave if <)

Example
Let A = probability that x=x for1 =1, 2, ...n

E(X) = A%, + A%+ + A X, = D AX

i=1

E(F(0) = A, (%) + A, T 06) +---+ 4, £ (%,) = 24 1 (x)

If fis concave = f(E(X)) = E(f (X))
If fis convex = f(E(X)) < E(f (X))

Example
Show that f(x) = x| is convex in (-co,00)

Let a,b 0 (-e0,00) and for A0 (0,1)= f((1-A)a+Ab) =|(1-A)a+Ab)
Use triangular inequality: |a+bj <|a/ +|b|: |1~ A)a+Ab| <|(@-A)a]+|AY
Since (1 - 1) and A are positive, we can say:

(1= A)a|+|Ab| = @=)|a +AJo| = @-A)f(a) + Af (), so fis convex



Probability

Definitions
Outcomes - mutually exclusive results of a random process
Example: heads or tails (can't have both)
Example: your computer might never crash, it might crash once, twice, etc. Only one of
these outcomes will occur; i.e., the outcomes are mutually exclusive
Probability - of an outcome is the proportion of the time that outcome occurs in the long run
Example: if the probability of your computer not crashing while you are writing a paper is
80%, then over the course of writing "many" papers, you will complete 80% of the time
without a crash
Sample Space - set of all possible outcomes
Event - subset of the sample space
Random Variable (r.v.) - numerical summary of a random outcome
Example: the number of crashes while writing a paper is numerical and random, so it is a
random variable
Probability Distribution - of a discrete r.v. is the list of all possible values of the variable and the
probability that each value will occur. The probabilities sum up to 1.
Example: Let M be the number of times your computer crashes while you are writing a
paper. The probability distribution is:

M 0 1 2 3 4
Prob Dist 0.80 0.10 0.06 0.03 0.01
Cum Dist 0.80 0.90 0.96 0.99 1.00

Example: P(1 or 2 crashes) =P(M=1orM=2)=P(M=1) + P(M=2)=0.06+0.10=0.16
Cumulative Distribution - probability that the r.v. is less than or equal to a particular value
Example: P(M <1) =0.90
Bernoulli r.v. - a binary r.v.; can only take on one of two values
Example: Letr.v. G = {1 if it is going to rain
0 ifitisn't
The outcomes of G and their probabilities are G = { 1 with probability p
0 with probability 1 - p
Probability Distribution - of a continuous r.v. takes on a continuum of possible values and the
probability distribution is summarized by a pdf (probability density function)
Example: Let the driving time to school be a r.v. D and let its pdf be given by:
P(D < 15) =red area
P(D < 20) = green area
P(15sD<20)=P(D<20)-P(D<15 e,

_ 15 20 25 30 35
Expected Value (mean) - of r.v. y is denoted by E(y); long run average value of the r.v. over

many repeated trials or occurrences

k
If y takes on k possible values yi, ..., yy = E(y) = Z Py,
i=1
Example: using data for M, E(M) = 0.80(0) + (0.10)(1) + 0.06(2) + 0.03(3) + 0.01(4) = 0.35
Example: Bernoullir.v. E(G) =1p+0(1-p)=p
Variance - of r.v. y is denoted by Var(y)

E[(y— E(y))zl = Z p(y, —E(y,)))’ (rhsifyis discrete)



Example: using data for M,
Var(M) = 0.80(0-0.35) + 0.10(1-0.35)? + 0.06(2-0.35)? + 0.03(3-0.35)% + 0.01(4-0.35)% = 0.6475
Example: Var of Bernoulli = (1 - p)(0 - p)*> + p(1 - p)*> = p(1 - p)

Standard Deviation - denoted by s, or g, = /Var(y)

Example: using data for M, s, = sqrt(0.6475) = 0.8
Moments - expected values of various powers of a function
First Moment - E(Y)
Nth Moment - E(Y")
Covariance - measure of the extent to which two r.v.'s move together

k|
Cov(x,y) = 0y, = E|(x= )y = 4,)] = DD (X, = (¥, = 4, )P(x =%, & Y= ;)
=i j=1
Joint probability distribution - combines probabilities for two events that occur at same time
Example:

x=0 (rain) x=1 (no rain)

y=0 (long drive) 0.07 0.22
y=1 (short drive) 0.63 0.78
0.70 1.00

Correlation Coefficient -
COV(X! y) —_ axy

JVar (x)Var (y) - 0,0,

Corr(x,y)=p=

Properties of Expected Value
If bis a constant, E(b) =b

If a, b are constants, E(ax+b) =aE(x) +b
If x & y are independent r.v.s, E(xy) = E(X)E(y)

Mean & variance of a linear function of ar.v.
Let x & y be two revs that are related by y = a+bx, then

E(y) = E(a+bx) = a+bE(X)
Var (y) = E(y - E(y))® = E[(a +bx) - (a+bE(x))]” = E[bx -bE(X)]” =
1way: E|b?x? - 20xE(xX) + b? (E(x))?| =
2nd way: E[b(x— E(x))]2 = E[bz(x— E(x))z] (can now use rules above
b?E(x - E(X))? =b?Var(X)

Marginal Probability Density Function - original distributions of r.v.s in joint distribution function
f(xy)
f(x)= Z f(x,y) and f(y)= Z f(X,Y) ... seen in total column and row in table above
y X



Conditional Probability
Probability that x takes a specific value given that y has a specific value, P(Xx=X, |y =Y,)

f(x,
f(x|y):M
f(y)
Example:
f(x=-2|y=g=1X="2Y=3 027 ;4

f(y=3 0.51
Note, f(x=-2)=0.27

Independence
x & y are statistically independent if f(x,y) = f(x)f(y)
Example: f(x=-2,y=3)=0.27% f(x=-2)f(y=3)=0.27(0.51) so x &y are not ind
Example: a bag contains 3 balls numbered 1, 2, 3. Two balls are drawn at random with
replacement. Let x denote the # of the first ball and y denote the # of the 2nd ball.
f(X=X,,Y=VY,)=1/9=f(x=x,)f(y=Y,) sox&y are independent

Normal Distribution
With mean w and variance ¢ denoted by N(y, &)

1 2
f(x) = Toro®

Properties
1) Symmetric around the mean
2) Approx 95% of area under the curve lies between py+ 20

3) X, ~ N(ﬂl’alz) and X, ~ N(/JZ,O'ZZ), then y =ax, +bx, ~ N(ay, +b/.12,a20'12 +b2022)
4) Standard normal dist (z) has =0 and ¢ = 1; used to calculate the are under the curve
by converting regular normal distribution to std norm by:
2= Y- H
o

Example: y ~N(1,4), P(y < 2) = ?, convert to standard normal Z
P(yz_ls%lj:P(zsuz):o.ag % §

Example: P(z>1.12) =0.5- 0.3686 = 0.1314
Rules using z
1) P(zzc)=1-P(z<c)=1-P(c) (P(c)is the cumulative density function)
2) Pcsz=<sd)=P(z=sd)-P(z<c)

Chi-Squared Distribution
Sum of k squared independent standard normal r.v.s

k
> 72 ~ k¢ (k= degrees of freedom, df)

i=1

il
N Ol




Properties
1) Skewed to the right (not symmetric); degree of skewness depends on k; large k
approaches normal distribution
2) mean is k, variance is 2k

3) z,~k; and z, ~ K. then z, +2, ~K_,,
Example

P(k3, > 40) = 0.005 (using table)

P(k3 <8.26) =1-P(k}, >8.76) =1-0.99 = 0.01

F Distribution
If z, and z, are independently distributed «° r.v.s with k, and k, df then
k
Z1/ 1 Fk1’k2
z,/k,

F50,50
. F
Properties 10,2
p F2,2

1) Skewed right; approaches normal as k;,k, — o
— 2k22(k1 + kz B 2)

) u=—2=2-(k,>2), o= k, >4
P2 7 T - T
3) I k, is fairly large then k,F = &}
Example
P(Fyg >3.4) = 0.05 (using table)
Student's t Distribution
If z, ~N(0) and z, ~ k; are independent, then
Z ~t,
z,/k

Properties
1) Symmetric like normal, but flatter (thicker tails)

k
2) u=0, o=——
) U K2
Example
P(t > 3) = 0.005
P(Jt > 3) = 2P(t > 3) = 0.01 (because it's symmetric)

Central Limit Theorem
Let y1, Y2, ..., ¥n be iid (independently and identically distributed) with E(y;) = ¢, < and

Var(y,) = o, <oo,thenM O - N©OJ
-
y



Systems of Linear Equations and Matrices

Linear Algebra
Study of systems of linear equations
Note: x;X; = 5is not a linear equation, but you can make it linear by taking In of both sides:
Inx; + InX; = In5 (which is linear)
System - mindependent equations; n variables
AuXy + ik t ... X, =y
Bo1Xy + AgXo T ... Xy =,

AmiX1 + mpXe ... FamXn = b
Coefficients - g;
Right-hand Sides - b
Solution - ordered set or list of numbers (s, S, -..,S,) that satisfies all the equations
simultaneously
Consistent - a linear system that has at least one solution
m < n - many solutions
m=n - at most 1 solution
m > n - no solution
Inconsistent - linear system with no solution

Matrix
Rectangular array of numbers considered as an entity; mrows & n columns; denoted by bold
capital letters

a; &, -

a a - a
A = .21 .22 .2n

aml amz amn

Order - dimensions of a matrix: mx n

Elements - entries; each a;

Row Vector - matrix with only one row

Column Vector - matrix with only one column

Square Matrix of order n - matrix where m=n
Main Diagonal - elements a1, @, ..,am

Vector Operations

Vectors typically denoted by lower case bold letters
Components - coordinates; elements of a vector

Equal - all corresponding components of each vector are equal

a=be-ag=b0i=1,2,...n
Sum - add corresponding components of 1 x nor n x 1vectors
at+b=(a,a,..a)+ O, by...,by) = @1+ by, &+ by,...,a, + by)



Scalar Multiplication - multiply each component by t
ta=t(a, a,...,a,) = (tay, tay,..., tay)

Difference - a-b =a+ (-b)

Linear Combination - ra + sb

Dot Product - also called inner product or scalar product; adds the product of corresponding
components of two vectors:

alb =a.]_b1 +a.2b2+ +anbn = Za1b|
i=1

alb = || b cosd (see orthagonality in next section)
Rules for Dot Product
ab =b@
al(b +c¢) =ab + ald
(aa)b = a(alb) = al{ab)

a@= iaﬁ >0
i=1

Geometry of Vectors
Vector a describes the movement from point P = (py, p2) t0 Q = (qu, O)

-

Sum a + b is the diagonal in the parallelogram determined by the two sides aand b

w



Difference a - b is the diagonal in the parallelogram determined by the two sides a and -b

Length - also called norm

= a7 e e =Vaia

Euclidean Distance

lla-bli=+/(a,—b)? +(a, =b,)? +---+(a, =b,)’

Cauchy-Schwarz Inequality
[ath| < {4 co]
Proof:

bl =lab, +ab, +++a,b) () \af +al +-+al Qfbf +b 4o 4b]
Square both sides:
(b, +a,b, +--+ab,)* <(?) (& +a; +---+ag) (b +b; +---+Dby)
Define g(X) = (a,x+b,)* + (a,x+b,)* +---+ (a,x+b )*>0
Expand: g(X) = (a’x* +2a,b,x+b?) +---+ (a’x+2a b x+b*) =0
Combine terms: (8”7 +a +---+a’)x* + (2a,b, + 2a,b, +---+2a b )x + (b7 +bZ +---b?)
Rewrite as Ax® +Bx+C
Take derivatives to check convexity
g'(x) =2Ax+B
g"(x) = 2A =0 since it's a sum of squares, 0 g is convex
Also, since g(x) = 0 it cannot cross the x-axis so there are no real roots or the only root

is x = 0, therefore B? - 4AC < 0 (quadratic formula)
Rewrite as B?< 4AC

Substitute values: (2a,b, +---+2a.b )’ < 4(a+a’ +---+a?) (b +bZ +---b?)
Factor out 2 in left hand side: [Z(aib1 oot anbn)]2

Take it out of the square: 4(ab, +---+a b )’

Cancel the 4 and apply def of dot product and length:
(alb)” < (af +a; +--+a7) (b +b; +---b7) //




Orthogonality -allb = alb =0
alb
cosd=———,if =90, cos¥ =0so ab =0
Gl

Right angle means:
lla - b|f = |RIf + |p|f (Pythagorean Theorem)

(a-b){(a-b)=a@d+bb
a@d-ab-b@+bb=ald+bb
-2(@ab) =0

ab=0

Two vectors determine a line: x = (@1—-A)a+Ab

NN & D NN Y b,
In 2 dimensions: (X ] = )l)[azj +)l(b2]

2

Hyperplanes - a plane is a linear combination of 3 points; vector p is orthogonal to a plane if it is
orthogonal to all lines on the plane; if a and x define points on the plane, then

PX - &) = pa(Xe - &) + Pa(X1 - ) + ... +Pn(Xn-ay) = 0

Matrix Operations

Equal - A=B < A and B are mx nmatrices withg; =b; 0i=1,2,..m;j=1,2,..n

Sum - A +B = (@j)mxn + 0j)mxn = @ + bj)mxn (@dd corresponding elements of m x n matrices)
Rules for Matrix Addition

(A+B)+C=A+B+C) (associative)

A+B=B+A (cumulative)

A+0=A (identity)

A+(A)=0

(a+PA =aA + A (distributive over scalar addition)
aA+B)=0A +aB (distributive over scalar multiplication)

Scalar Multiplication - aA = (aa;)mxn (Multiply each element of A by a)



Product - A = (aj)mxn and B = (bj)nxp, C = AB is mx p matrix C = (Cj)mxp, With
G = Zairbrj =ayb; +a,b,; +---+a,b;
r=1

Basically taking dot product of each row of A with corresponding column in B:
Example:

c1=23+3A+11)=6+3-1=8
Rules for Matrix Multiplication

(AB)C =A(BC) (associative)

A(B+C)=AB+AC (left distributive)

(A+B)C=AC +BC (right distributive)

Cautions

AB # BA (not commutative; BA may not even exist)
AB+C)£# (B +C)A (not commutative)

AB=0AA=00rB=0
AB=ACandA#04A4B=C
Identity Matrix - of order n is n x n matrix having ones along the main diagonal and zeros

elsewhere
0 --- 0
: 1 0
0O 0 - 1 i
Al,=1,A =A

Transpose - If A is m x n matrix, transpose of A is defined as n x m matrix whose first column is
the first row of A, whose second column is the second row of A, etc:

a; 3, - &, ay - Ay
A: a21 a22 a2n N A: a12 a22 am2
aml a'm2 ar’nn a:I.n a'2n a'r’nn
Rules for Transposition
(A=A
(A+B)=A"+B'
(aA)' = aA’
(AB)' =B'A’

Symmetric Matrix = A = A
Orthogonal Matrix = A'A =1In

Determinants - denoted by det(A) or |A; has to be square matrix
2nd Order

ay 9

A=
21 Y2

=818, ~a,Q,




3rd Order ("easy" formula; doesn’t work for larger matrices)

Q185,833 + 1,85385; T A38,,85, ~ Ag189,85 T Agpp3By; T Agzn Aoy
Cofactors
1) Pick a column or row (which has most number of zeros)... e.g., row 1
2) For each element, take determinant of matrix made by deleting the corresponding row
and column (M)
3) Multiply the determinant by -1 to the i +j power and by the corresponding element g;

(-1 Mij‘aﬂ {(-D™ Mij‘ is the cofactor }
Example using row 1
(_1)1+1 a:Ll a22 a23 + (_1)1+2 a12 a21 a23 + (_1)1+3 a13 a21 a22
a32 3 a31 3 a31 a32
Example:
121 21
: 1 21 2
E0000151200 1 2 1 2 1
1200 f=-Tosmsd=-121 2 0-10 2 =-12(0)-10)] =0
0021051211E 121 1 21
12110

Rules for Determinants

If all elements in a row (or column) of A are 0, then |A| =0

If all elements in a row (or column) are multiplied by a, determinant is multiplied by a

Value of determinant is unchanged if a multiple of one row (or column) is added to a
different row (or column)

If two rows (or two columns) are interchanged, determinant changes sign, but absolute
value is unchanged

If two rows (or columns) are proportional, then |A| =0

IAY = Al

|AB| = A|B]

|aA| = d"|A| (A is nx n matrix)

Cautions

|A +B|# Al + Bl

Cramer's Rule - solving a system of equations
b, a, a, b
— bla22 B b2a12 — b2 &, — b2a11 B b16‘21 _ 82 b2
= = , = =
a,,8,,73,1, |A| a,,8,,73,8, |A|

To find x1, replace A's first column with b; take determinant and divide by |A|
To find x2, replace A's second column with b; take determinant and divide by |A|
Example:

2x1+4x2 =7



2x1-2x2 =-2
2 4
|A|:‘ 2l:—4—8:—12

2 -
e
-2 -2 _-14+8_1
& Al -12 2
2 7
© A -12 2

Inverse - denoted by A™; has to be square matrix
AX =XA =1,
Singular - matrix with no inverse
Nonsingular - matrix has an inverse = |A|#0
Rules for Inverses
(A=A
(AB)'=B'A*
(A= (A"
(aA)*' = a'At
Example:

a b) _ 4 (W X 4 (10
A= ,find A= = ... AAT =
c d y z 01

aw+by ax+bz
cw+dy cox+dz
Use Cramer's rule:

AA™ = j ... four equations with four unknowns

1 b a 1l

0O d d c -C
W= = , Y= =

a bl ad-bc a bl ad-bc

c d c d

O b a

1d -b c 1 a
X= = , 2= =

a bl ad-bc a bl ad-bc

c d c d

d -b

At=1 = iAolj (A)

A\-c a) A

Adjoint - Adj(A); transpose of the matrix made up of all the cofactors
"Easy" Way - make a new matrix with the original next to an identity matrix; use the following
operations to get an identity matrix on the left; the result on the right is the inverse:
Types of Operations
1) switch rows
2) multiply row by scalar



3) add multiples of a row to other rows
Example

2 3 5)(1 0
4 1 60 1
31 7)\0 O

= O O

Multiply first row by 1/2: |4 1
3 1 7 0O 01

1 3/2 5/2] 1/2 0 O

1 3/2 5/2\(1/2 O O}

-2 10
0 01

Add -4 times first row to secondrow: |0 -5 -4
3 1 7

1 3/2 5/2)\ 1/2

0
Add -3 times first row to third row: |0 =5 -4 -2 10
0 -7/2 -1/2){-3/2 0 1
1 3/2 0 0
Multiply second row by -5: | O 1 -1/5 0
0 -7/2 =-1/2)\-3/2 0 1
1 0 13/10\(-1/10 3/10 O

Add -3/2 times second row to first row: | O 1 4/5 2/5 -=1/5 0
0O -7/2 -1/2 ) -3/2 0 1

1 0 13/10\(-1/20 3/20 O
Add 7/2 times second row to firstrow: |0 1 4/5 2/5 -1/5 0
0O 0 23/10)(-1/10 -7/10 1

1 0 13/10)(-1/20 3/10 0
Multiply third row by 10/23: |0 1 4/5 2/5 -1/5 0
00 1 -1/23 -7/23 10/23

1 0 0 )(-1/23 16/23 -13/23

Add -13/10 times third row to firstrow: |0 1 4/5 2/5 -1/5 0
0O 0 1 J\-1/23 -7/23 10/23

1 0 0)\(-1/23 16/23 -13/23
Add -4/5 times third row to the secondrow: |0 1 O 10/23 1/23 -8/23
0O 0 1)\-1/23 -7/23 10/23



Systems of Equations

Coefficient Matrix - mx n matrix of all the coefficients of a linear system of m equations with n
unknowns; from page 1, A is the coefficient matrix to the linear system above

RHS Vector - b is a column vector containing the b;s on the right hand side of a linear system

Can rewrite system of linear equations from page 1 as Ax=b

Solve with inverse: A'Ax =x=A"b

Linearly Independent

X113 X5,...,X,, (all kKx1 vectors) are
linearly dependent if 0 A, A,,...,A, # (00,...,0) such that A,X; +A,X, +---+A X, =0,
linearly independent if 41 A,, A,,...,A, # (00,...,0) such that A,x, + A,x, +---+ A x, =0,

How to check, arrange each vector as a column (or row) in a matrix, X, if |X| = 0, they're linearly
dependent



Partial Derivatives

Function of Several Variables
Function - rule that assigns a specified number f(x) to each n vector X = (Xy, X, ...,X%,) in the
domain D
Example: f(x,y) =X +y*
3d plot:

2d elevation plot - plots all combinations of x and y that give a constant value for f(x,y)
Example: Budget Constraint, Coke & Pizza

Coke

| MC of x (Pizza) in
terms of y (Coke)

PCoke /

'PPizza
Pcoke

| Pizza
PPizza




Partial Derivatives

One variable:

f(x+h)-f(x)
h

f'(x) =lim,_,

Two variables:

of(x,y) _,. f(x+hy)-f(xy)

——===lim,_,
oX h

Interpretation - partial derivative is slope of tangent to function in plane where you're taking
the partial (e.g., if you're in 3 dimensions, partial wrt x gives you tangent to curve in plane
where y is held constant; this plane with be parallel to the xz plane); all partials determine
a plane that is tangent to the function

Example - Cobb-Douglass production function of capital, K, and labor, L

f(K,L)= AK?*" (K>0,L>0)

(partial of f with respect to x; hold y constant)

IGL) - Araker
aK K -'\iuf’ >
of (K,L) — ALK L ] ) : X .
oL
Example: ‘
f(xy) =x*+2y?
Of (XY) _ 40 .
0X
of (x,y) —ay
ay

Higher-Order Partial Derivatives

z =f(x)y)
First order: M
o0x

2 2
Second order: f_ _07T(xy) fo= 0°f(xy) _0 (df (x,y)

axz YT axdy  ox\ ay
Example: f(x,y) = x’e’

af (X, y) - 2X€y af (X! y) = XZey

], also have fXy and fyy

0x ay
2 2
a f (X! y) - zey , a f (X! y) - XZey, af (X! y) - af (X’ y) - 2xey
x> ay’® oxoy Ayox

Note: Usually f,, =f, but not always
Example: w= f(X,y,2) = x* +2y* + xz°
ow

—=4x*+ 7
oX
2 2
OW o7, I W oo
020X ox



3w 92w

, =0
OxA20X 020x°
Young's Theorem - function that has nth order continuous derivatives, if any two derivatives
involve differentiating with respect to each of the variables the same number of times, then
the derivatives are necessarily equal (i.e., the order of the differentiation doesn't matter)
Example where Young's doesn't work:

XY=y y) # (00)
f(x,y)= 2 2
(X, Y) X Sy (xy) = (00)

If you hold x = 0, f(x,y) = 0 (regardless of what happens to y); also f(x,y) =0 wheny =0
(regardless of x)

f(0,y)-f(00) _of

lim, v oy ©00)=0
jim_ X0 =100 _0f 4
X o0x
of _ (3x*y - y*)(¢*+y?) - (X°y — xy*)(2x)
& - (X2 + yz)z
of 0y -y __
ox y? -
of _ (x° =3y*)(x*+y?) = (Cy = xy°)(2y)
oy (X +y?)?
of (x0) _X° _
oy x*
of (0,y) _of (00)
0°f :<91‘x(0,y):”mp0 X x _~y-O0__,
oyox  dy y y
of (x0) _ of (00)
0% f :5fy(X,0):"mXﬂ0 ay oy _x=0_,
oxoy 0Xx X X

Why are these different? Look at second order partial where y = x
of _x*-3xy*  2x°y* -2xy*

ay - X2 + yz (X2 + yz)z
0°f _ (X" =3y")(X* +y*) - (x* =3xy*)2x

oxay (x* +y?)?
©x7y® —2y" )¢ +y*)* — (2y* - 29°)2(x" + y*)2x
(XZ + y2)4
0°f _=2x(x*-3x%)  ex*-2x* _ -2x*+6x* -6x* +2x* _
(%, X) - 0
oxdy (X2 +x%)2 (X2 +x%)? (x> +x7)?

But we just showed that the partial at (0,0) is 1; that means the function is not
continuous at (0,0)



P AP ER RS luated at X = _,X,...,Xn
ax, ox, dxn] evaluated a (X, X, )

Hessian Matrix - all combinations of second order partial derivatives

flul(x) fluz(x) fllrl‘n (X)
H= f”(x):[ 0°f ]_ f21.(X) fzzz(x)

Gradient - vector of all first order partial derivatives of a function evaluated as some point
( of  of 0

_ (%)
0x,0X; :
() f00 - (%)
Young's Theorem says this is usually a symmetric matrix
Example: Cobb-Douglas function: f(K,L) = AK?L"
O = pak Ly
oK
9~ AKbL
oL
2 2
01 _ pabK B 01 _ pabkL™
OKdL 0LOK
0°f

2
e Aa(a-1)K=*2L", ‘ZLI = Ab(b-1)K L2

H = Aa(a-1)K=?L°  AabK L™
AabK **'L°™*  Ab(b-1)K*L"?
Aside: for Cobb-Douglas production function:
a + b = 1 constant returns to scale

a + b > 1 increasing returns to scale
a + b < 1 decreasing returns to scale

Quadratic Forms

Functions with variables to the second power
Example: f(x,y) =ax? + 2bxy + cy?

b
In matrix notation: (x y)(s CJ(Q =(ax+by bx+ cy)(i] = ax’ + 2bxy +cy’

o = 2ax + 2by
0X
o = 2bx + 2cy
ay

o2f . 9°f

2 2 2a 2b
——=2b, —=2b, aZ:Za,%:ZCso H=
oyox 0xoy 0X oy

2b 2c




General Case:

Q; Qp A, | X%
)a21 ) &

a, a, - a,\X
Positive Definite - f(x,y) > 00 (x,y) # (0,0)
Positive Semidefinite - f(x,y) =2 0 (x,y) # (0,0)
Negative Definite - f(x,y) < 00 (x,y) # (0,0)
Negative Semidefinite - f(x,y) < 00 (x,y) # (0,0)

f(x,y) is positive definite iffa>0,¢>0 and ac-b*=|A| >0

Proof:
Let x=1and y=0
f(x,y)=a>0
Let x=0and y=1
f(x,y)=c>0

b? -b ac-b?

f(-b/al)=a— + 2b?1+ c@) = >0 and since a> Othen ac-b” >0
a

That proves positive definite leadsto a> 0, ¢ > 0, and ac - b? = Al >0
Now suppose a>0,¢> 0 and ac - b? = Al >0
Factor out a and add/subtract b/ay:

2 2
f(x,y):a(x2+2—bxy+£y2j: x2+2—bxy+b_y2—b_y2+3y2
a a a a2 a2 a

2 _Rh2
f(xy)= a(X+§y] +(acab ]yz >0so0 f(x,Y)is positive definite

f(x,y) is positive semidefinite iff a= 0, c= 0, and ac-b*= |A|= 0
f(x,y) is negative definite iff a<0,c<0,and ac-b*=|A| >0
f(x,y) is negative semidefinite iff a< 0,c< 0, and ac-b?*=A|= 0

Example: f(x,y) =x*+ y?... positive definite
Example: f(X,y) = (x-Yy)?... positive semidefinite
Example: f(x,y) =—(Xx-Y)?... negative semidefinite
Example: f(x,y) =x?—y?... indefinite



Chain Rule
If x=g(t)and y=h(t)so f(x,y)= f(g(t),h(t))
Total Derivative of f wrt t; ﬁ = i% +ﬂﬂ
ot o0xadt odyot
General Case: f(X,X,,...,X,), X =h(t,t,,....,t)

of & of ox

ot, = ox ot
Example: f (X, +th,y, +tk)
of

o = B0+t +tioh+ £, (6 +th, y, +th)k



Total Differentials & Taylor Approximations

0°F(x.Y)

NOTE: F,(xY)= Oy0x

Implicit Functions
Given F(X,y) =c (level curve), what happens to y as we change x... if y =f(x), we look at new
function g(x) = F(x, f(x))=c

Take derivative of both sides: F, (X, f (X)) + F, (X, f (X)) fa():() =0
dy _of(x) _ —R(x f(x) _ —F(xYy)

Solve for = =
x  x  FMXI(X)  F(xY)
Example: Bx+Py=1 = y= | =P
Py
9y _ P
ox Py

Example: F(x,y) =x%+x*y—-2y*-10y=0
0
Y at (xy) = (21)
oX

F(x,y)=3x"+2xy = F, (21)=3(2%) +2(2)(1) =16
F,(x,y)=x*-4y-10 = F,(21) =2*-4(1)-10=-10
oy -16 _8
—— 2D)=—=—
OX @D -1¢ 5

Example: x*+e¥ =0
Can compute the implicit derivative, but it won't matter
Problem... there's no (X, Y) that solves the equation

Other cases that doesn't work: F,(x,y) =0 (i.e., vertical lines)

Directional Derivative
Fromhto k: D, where X=X, +h and y=y, +k

Approximates change in function as function of t, as g(t) = f (X, +th, y, +tk)

Gradient Vector

oF =[9F OF \y
ox oy

Two properties:
Perpendicular to tangent
Parallel to direction of maximum increase in function



X=X
Now, D = F,(Xx—X,) + F,(y—Y,) =0 can be rewritten as DF( 0] =0 or

Y~ Yo
UF [ﬂX— X Y- yo)
You can use alb =|djo|cosé with a=0F and b =any vector; a special case has
D =|OF| Cjz| , where zis a vector pointing to the maximum increase in the function (i.e.,

parallel to the gradient so cos0® =1, NOTE: cos0° =1 is the maximum value for cosso this
is the maximum increase in the function).

Second Derivative
dy _—R(xy) _-G(xy)
ox  F,(xy) H(xy)

a’y :_G'H -GH'
ox? H?
. 0G(x, (X)) _dF.(xy) _ oy _ -F
G'= ( X () = 16X =FL (% y) + Fu(X y)a_i =F,+F, le
_ OH(Xx, T (X)) _9F,(x,y) _ oy _ -F
H'= (ax (X)) = 26X = Fu(X,y) + Fu(X, Y)a_i =Fy+ FzzF_zl
-F -F
62y _ (Fll +F, F;]FZ - Fl(F21 +F F;]
x> (F,)°
-1
(F—3 |:11|:22 - 2F12 F1F2 + I:22 F12]
2
1 0 F F
= F, F. F,| ("bordered" Hessian)
’ F, Fy Fyp

Linear Approximation
Approximation:  f(X,y) = f(x;,Y,) + (X=%,) + f, (Y~ ,)
Plane through a point (X,,Y,,2Z,): Z—2Z, = A(X—X,) + B(Y - Y,)
If z=f(xYy), plane tangentto f(X,y)at (X,,¥:2,): Z—2Z5 = Z,(X= %) +Z,(Y = ¥o)

Z, :6_ and z, = —

ox Yooy
In2d say X=X, +dxxor y=y,+dy;nowsay z=2z,+dz so dz=z-2z,= z,dx+z,dy,
similar to saying df (x,y) = f,dx+ f dy

Rules:

d(af +bg) =aldf +bldg (a & b scalars & f & g functions)



d(fg) = gldf+ f [dg
(f]_ g [df — f [dlg
d—|="—5—
g g
z=g(f() = dz=g'df
Proof of second rule:
d(f(x Y)g9(x y) = [f,(x Y)a(x ¥) + F(x y)g'(x, Y)]dx+|f, g+ fg, |dy
gl f.ox+ f dy|+ f|g,dx+g,dy|= g &f + f Ctig

Doesn't matter if x and y are functions of other variables:
z=F(x,¥y) where x= f(t,s) and y=g(t,s)
z=F(f(,s),9(t,59))
dz=z [dt+zds, z =F, X +F, 0¥, and z, = F, X + F, 0¥,
dz = (F, O, +F, Oy )dt + (F, O, + F, 0, )ds
dz = F,(x.dt + x.ds) + F, (y,dt + yds) = F,dx+ F,dy dy = f,ddx
5 OF

General case: F(X,,X,,...,X,); dF = Z—mxi where dx, = x, —x° (old - new)
i=1 i

Example: z=xy® + x°
dz =z dx+zdy = (y2 + 3x2)dx + 2xy [dly
If x changes from 3 to 5 and y changes from 2 to 7 (really too big for this technique)
dx=2;dy=5
dz = (22 +3(3))(2) + 23)(2)(5)

Taylor Series with Several Variables
Move from f(x2,x9) to f(X,,X,); know value of x, and X,, but not f(x,X,)
Can approximate it.
Can rewrite x, =X +th, and X, = x5 +th, so now f(x,y;) = y(t) = f(x +th,,xJ +th,) which
is a function of 1 variable (t) and can use Taylor Series
1 (n)
v =y +y O+ L 20+ Oy o
nl
y(n) (t*) tn
n!
How do you gety wrtt? y'(t) = f (X} +th, x5 +th,) Th + f ,(x +th,, x +th,) [h,

SO yl(o) = fxl(xfixg)l:hl + fxz(Xf,Xg) Ehz
2 2
Nextisy": y"(0) =D > f, (X, x)hh,

i=1 j=1
Can write second order Taylor Series using matrix notation with the Hessian matrix:
f(x, +h)=1(x,)+ f'(X,)h+2h'Hh

Y(t)ZY(O)’LY'(O)HyT(O)tZ+-~-+ ,Where 0< t* <t

Example: f(x,y) =3x* +5xy+6y* +10



Evaluate Talor series approximation for (X,,Y,) = (11)

f(22) = f @)+ f, Q) Hx=x%)+ f, AY Ly = y,) +3 F, (D) Ix=%,) +3 T, QD Ly - yo) +
f, @D X—X%,)(Y—Y,) (higher order derivatives are all zero so this is exact)

f, =6x+5y f,=6 f,=5

f, =5x+12y f,, =12

f(22) =24+110) +17Q) +16@) +112(1) +5=66

Check approximation: 3(2%) + 5(2)(2) + 6(2°) +10= 66

Taylor Series with 2 variables and n= 3
FOXY) = F (% Yo) + £ (X0, Yo)(X=X,) + fy(XO’ Yo)(Y—Yo) +
1
2

%[fxxx(XO’ yo)(x_ Xo)3 + fyyy(XO’ yo)(y_ yo)3 +3fxxy(X0’ yo)(x_ Xo)z(y_ yo) +

3 (X0 Vo) (X=X )(Y = Vo) 2+ X, Vo) (Y ~ Vo)

fxx(XO! yo)(x _Xo)2 + fyy(XO’ YO)(y_ YO)Z + 2fxy(XO’ YO)(X_ Xo)(y_ yo)]"'



Optimization with Several Variables

Extreme Value Theorem (Existence Theorem)

Any continuous function attains a maximum and a minimum in a compact set (i.e., closed and
bounded set), there exists a maximum ¢ and a minimum d; sufficient, but not necessary
condition
Maximum: f(x) < f(c); Minimum: f(x) = f(d) (Extreme Points)

First-Order Conditions

For interior point ¢ = (c,,C,,...,C,)to be a max or min of f(c), necessary conditoin is:
of (c : : .
91 ) =00i=12...,n (Stationary Points)

oc; Local max

Condition is also necessary for local max or min

Global max

Aside: Will also have directional derivative D,, f (c) = Z f.(c)th=0

i=1

Theorem

f defined over SO R’

F(x) defined in range of f

g(X) defined on S(domain of f)

9(x) = F(f(x)

a) if F is increasing and ¢ maximizes (minimizes) f over S then c also maximizes (minimizes) g
over S

b) if F is strictly increasing then ¢ maximizes (minimizes) f over S iff c maximizes (minimizes) g
over S

Example: f(K,L)=AK?L> (K >0,L>0)
Let F(u) =Inu (strictly increasing)
g(K,L)=InA+alnK +binL
Find K & L to max g, and they'll also max f

Proof of a:

Assume ¢ miximizes f
f(c)=f(x) OxOS
F(f(c)) = F(f(x)) O xOS because F is increasing

Proof of b:

Assume ¢ maximizes g
F(f(c)>F(f(x)) OxOS
f(c)=f(x) OxOS

Finding Max or Min
of a differentiable function f defined on a compact set
1) Find all stationary points
2) Find largest & smallest values of function on the boundary



Example: if domain is x [0 [0,3] and y [ [0,3], need to look all around square determined
by x & y at their limits
3) Compute values of function for all points in steps 1 & 2
4) Compare values of the function
5) Largest value is the max; smallest is the min

Using First Derivative for Max/Min
With single variable, looked at stationary point c, if f'(x) >0 for x<c and f'(x) <0 for x>c,

then cis a max
Doesn't work with several variables:

f(xy) = x*+2bxy + y?
Stationary points:
f,=2x+2by=0
f, =2bx+2y=0
(0,0) is a stationary point
Is is a min?
Fix y=0 and look at g(x) = f(x,0) = x*... hasminas x=0
Same for x=0
Butif b=-3/2, f(x,y) =x*>-3xy+y®so f(x,x)=-x*<0 (when x#0)

Second Order Conditions
Let f(X,y) be continuous function with continuous first and second order derivatives in a

doman S and (X,,Y,) be an interior stationary point
A=1,(X,Y,) (i.e., second derivative wrt x evaluated at (X,,Y,))
B=1f,(X,Y,) = f,(X,,Y,) (because fis continuous)

— Saddle point:
c= fZZ(XO’ yO) Max in one axis, but in in
1) A<0 and AC-B” >0, then (X,,Y,) is local max another

2) A>0 and AC-B? >0, then (X,,Y,) is local min
3) AC-B” <0, then (x,,Y,) is a saddle point
4) AC-B? =0, then (X,,Y,) is a min, max, or saddle point

A
NOTE: AC-B? = ‘B (the Hessian)

Example: f(X,y)=-x®+xy+y®+X
Necessary first order Conditions:
f(x,y)=-3x"+y+1=0
f,(x,y) =x+2y=0
Plug in X = =2y into first eqn to get 12y* + y+1=0 so y=1/3 or —1/4



Plug back in to X = -2y to get two stationary points: (—2/31/3) and (1/2,-1/4)
Now look at second order conditions:

f.(x,y) = —6X
fLo(xy) =1
fo(x,y)=2

Compute Hessian at the two points

4
(-2/31/3) H =‘1 5 =7>0 = Minimum

-3 1
@/2-1/4) H =‘ L 21: —7<0 = Saddle Point

Example: Three functions () z=-x*-y*, (b) z=x*+y*, () z=x>+V°

(a) Stationary points:

z =-4x*=0

z, =-4y* =0 = (0,0) is stationary point

A=z,=-12x*, B=2,=0,C=-12y* =0

Soat(0,0,H=0

(0,0) can be either min, max or saddle point

Look at function... Ox # 0,00y # 0= z(X,Yy) < z(0,0) =0 so it's a max
(b) & (c) are similar, i.e., (0,0) is stationary oint with H = 0

For (b) Ox# 0,00y #0= z(x,y) > z(00) =0 soit's a min

For (c) z(1) =2>2z(00) =0 and z(-1-1) =-2<z(00) =0so it's a saddle point

Convex Sets

SOR"and x,y 0SS0 X = (X1, X2,..., %) @and y = (Y1, Ya,...,Yn)
Sisconvexsetifz=(1-A\)x+AyOSOA 0O[0,1] @
(i.e., line segment connecting x and y resides in S)

Example: budget set: Pxx + pyy< | (x=0, andy = 0)

Example: Cobb-Douglas production or utility functions: f(K,L) = AK?L® (K,L=0,a>0, b<1)
Level curve: f(K,L)=AK?L"=c¢

c 1/a
So K = (—j L/
A

oK _ (Ejﬂa b\ o
oL

A a
2 1/a _ _
%Llj = [%) (—bj(—b —1] LP72 5 0 g0 it's a convex set
al\ a

Facts of Convex Sets:
1) If S1, S2,..., Sn are convext sets, S, N S, n...Nn S is a convex set

2) If S2, S2 are convext sets: S = {(x, y): xS,y SZ} is a convex set



(Cartesian Product: S=S xS,

Convex Function
f(x) defined on convex set is

Concave if f[L-A)x+Ay]=@-A)f(x)+Af(y) Ox,yO1S,A0 (0)
Convex if f[(L-A)x+Ay]< @-A)f(x)+Af(y) Ox,y0S,A0 (01)

Strictly if using > and <
A linear function is both concave and convex, but is neither strictly concave nor strictly convex

(NN ]
[\

Formally
fis concave M, = {(x, y):xOSand f (x) = y} is a convex set

fis concave M, = {(x, y):xOSand f (x) < y} is a convex set

Jenson's Inequality
Discrete and continuous verisons
A function f of n variables is concave on a convex set SO R iff 0 Xy, X,..., X, 0 Sand A, = 0 with

DA =L FAX A%+ A X)) 2 AT (x) + A, T (Xp) +-+ A, T (X,)

i=1

Continuous Functions

Any function obtained by adding, substracting, multiplying, dividing or composing (function of a
funciton) some continuous functoins is also a continuous function

(We've been assuming this, but hadn't written formally yet)



Last Day!!!

Theorem
f(x), g(x) defined on S(convex set) 0 R
a) if f, gare concave and a= 0, b> 0 = G(x) = af (x) +bg(x)is also concave

b) if f, gare convex and a= 0, b > 0 = G(x) = af (x) + bg(x)is also concave

c) if F(X)is concave and increasing & f (Xx)is concave = U = F(f (x))is concave

d) if F(x)is convex and increasing & f(X)is convex = U = F(f(x))is convex

e) if f, g are concave = H(Xx) = min(f,g)is concave

f) if f, g are convex = H(x) = max(f, g) is convex

g)fora&b,add a+b>0, &f, g strictly, concave/convex = G(X)is strictly concave/convex

Proof of a:
Pick x,y [0S

G- A)x + Ay = af [ - A)x + Ay] + bg[@- A)x + Ay] =
a[(L-A)f () + A ()] +b[@=A)g(x) + Ag(y)] =
(L= A)[af (x) +bg ()] + Alaf (y) +by(y)] = L= )G(x) + AG(y)
Proof of c:
ufa-)x+Ay] = F[f[a-)x+Ay]|
Since fis concave: f[(L—A)x+Ay]= @- ) f(x) + A (y)
Since F is increasing: F[f[@-A)x + Ay]|= F[@- ) f (x) + Af (y)]
Since F is concave: F[(L—2)f(x) + Af ()] = Q= A)F(f (X)) + AF(f (y))
By def: (L-A)F(f (X)) +AF(f(y)) =@L-ADU(X)+AU(y)
So U is concave

Gradient Refresher

Of (x) = i i of

ox, 0X, 0X,
x—xoz(xl—xl0 X, = X5 ... xn—x,?)
Theorem

Let f defined on open convex set S

a) fis concave - f(x)—f(x,)< Zn:g—f(xi -x%) =0F Ox - X,)

i=1 i

b) f is strictly concave = f(x)— f(x,) < Zi(xi -x°)
i= 0%

. - Of 0

c) fis convex = f(x)—f(x,)= Za—(xi -x°)

i=1 0%



d) f is strictly convex « f(x)— f(x,) > Zg—f(xi -x°)

Proof of a:
Suppose f(x) is concave
f(QA-A)Xx, +AX) = A-A) F(X,) + AF(X) =
f(Xo) = Af (Xo) + Af () = f(Xo) + A(f (X) = (X,)
f (X) _ f (Xo) < f ((1_A)X0 +/1X) B f (XO) - f (XO +/](X _XO) B f (XO)

A A
Let g(A) = f (X, + A(X=X,))

So rhs of inequality is now: 3 =90

A
oy A)-g(0
g'(0) =lim, ,9A4) =90
9 F09100%)
n () - f0)
g'(A) = 2 f (D) Tx =) = Of [x=Xo) ) ——
i=1

Suppose f(x) - f(x,) < 0Of [{x—X,)
For brevity let z = (1- A)x, + AX be a point between x and X,
f(x,)— f(2) = Of (z) {x, — 2) (tangent going towards Xo)
f(x)- f(z2) <0Of (2)[(x—2) (tangent going towards X)
Multiply first ineq by (1 - A) and second ineq by A and add them together
A=) f(x,) = A= A) f(2) + Af (X) = M (2) < OF (2)[ - A)x, — L= A)z + Ax - AZ]
A= A) f(x,) +Af (x) = f(2) < Of (2)[@- A)x, + Ax - Z]
A= A)f (x,) + Af (x) - f(z) < Of (2)[0] = 0
A=) (xy)+AF(X) < f(2) = @—-A)X, + AX so f(X)is concave

Theorem

Let f defined on open convex set SO R with f O C? (i.e., continuous first and second order
derivatives); X, is an interior point of S

a) If f is concave, Xy is max = Xq is stationary point (all first order derivatives = 0)
b) If fis convex, X, is min = X, is stationary point (all first order derivatives = 0)

Proof of a:
Of (x,) =0

F(x) — f(x,) < Of () X~ X,) =0
f(x) < f(X,)S0 Xo is max



Theorem
f (X, y) O C* and domain Sis open and convex

. . f
a) If fis concave - f, <0, f <0, 7|20
fyx f)’y
b) If fis convex - f_ 20, f 20,7 7|20
X yy

c) Strictly convex/concave... remove = from = and <

Theorem (Sufficient Conditions for Global Extreme Points)
If this happens, you have a max or min

f (x, y) O C* and domain Sis convex with interior, stationary point (X,,Y,)

. . f. f.
a) O(x,y)OS f, <0, f, <0, V|20 = (X Y,)is global maximum
fyx fyy
.. .. £ f) _ -
a) O(x,y)OS f, =0, f >0, ¢ fx..y >0 = (X,,Y,)is global minimum
yX yy

Theorem
Function defined on a convex set is both concave and convex iff it is linear

(i.e., hasform: f(x) =ax+b=ax +a,x, +---+a,Xx, +b)



